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1.0 EXECUTIVE SUMMARY

This report documents a 30-month effort sponsored by the Office of Naval Research that
refined, applied and evaluated methods for analyzing the communication flow and
content surrounding collaboration. The methods include four measures of
communication content based on Latent Semantic Analysis and five methods that extract
patterns in communication flow.

Communication analysis methods were applied to the communication data from two
studies in the context of a three-person Unmanned Aerial Vehicle ground control
simulation. In the studies workload and geographic dispersion were manipulated and
team performance, process, team situation awareness, and shared mental models were
measured.

Communication analysis methods were evaluated in terms of their ability to predict team
performance in a consistent manner across studies. All methods, with the exception of
the Process Surrogate flow-based method, were validated by these criteria. Barriers to
full automation of the methods and generalization to different domains were identified
with proposed solutions.

Application of the communication analysis methods revealed that high performing teams
developed stable, consistent patterns of communicating which could be contrasted to
teams that were distributed, under high workload, or facing a communication malfunction
which were characterized by variable, yet flexible and adaptive communication patterns.
Findings led to an ecological perspective on team cognition, as well as new methods for
assessing team situation awareness and team coordination that are inspired by this
perspective. The methods can be applied to better understand collaboration or to assess
collaboration in order to evaluate tools or techniques purported to enhance collaboration.
With full automation and application to a wider array of domains these methods can be
applied to real-time monitoring of team communication for just-in-time intervention.
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3.0 INTRODUCTION

3.1 The Problem

Technological developments in the workplace and elsewhere have drastically changed the
nature of many tasks (Howell & Cooke, 1989), so that they have a much stronger
cognitive component. Taking a cognitive engineering perspective, these cognitive factors
need to be examined in the context of the larger sociotechnical system in which they are
embedded (Hutchins, 1995; Norman, 1986, Woods & Roth, 1988). The growing
complexity of tasks frequently surpasses the cognitive capabilities of individuals and
thus, necessitates a collaborative approach. This is true in both military (Salas, Cannon-
Bowers, Church-Payne, & Smith-Jentsch, 1998) and civilian environments (e.g.,
Sundstrom, DeMeuse, & Futrell, 1990).

Whereas the collaborative approach is often seen as a solution to cognitively complex
tasks, it also introduces an additional layer of cognitive requirements that are associated
with the demands of collaboration. An understanding of collaborative cognition, or the
new "social cognition" (Klimoski & Mohammed, 1994), is critical to understanding
collaborative performance. This is especially true of certain dynamic aspects of
collaborative cognition, such as coordination and communication. Tasks requiring
collaborative cognition in military settings are frequently embedded in a complex data-
rich environment. Individuals who work together are often separated by space and time
with asynchronous and distributed command-level decision making becoming the norm,
rather than the exception. Participants in this decision making setting are typically of
multidisciplinary, multicultural, or heterogeneous backgrounds. Further, group
membership can be dynamic with the identity of participants and tasks changing over
time and with high stress, high stakes, and fast tempo being common constraints. All of
these factors further complicate the setting for collaborative cognition.

For collaborative cognition, as in other contexts, measurement is a critical initial step.
Adequate measures are required for assessment and diagnosis of collaborative
performance, and for evaluating the success of interventions to aid collaboration. The
long-term goal of our research program is to develop and evaluate measures of
collaborative cognition and performance. Current measures of collaborative cognition
are limited given the complex nature of the typical tasks described previously (see Cooke,
Salas, Cannon-Bowers, & Stout, 2000). These limitations need to be addressed in order
to soundly measure and ultimately understand, team cognition.

One such limitation has to do with the fact that measures are often cumbersome and
administered apart from the task. By using communication data generated relatively
effortlessly as a byproduct of group interaction, we hope to overcome some of these
limitations. Just as individual cognition is reflected in the behavior of the individual,
collaborative cognition is reflected in the behavior of the group. Communication is one
salient aspect of group behavior that is particularly tied to collaborative cognition and
that has been used to infer collaborative cognition in several of the aforementioned
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studies. We take this a step further and propose that communication is cognitive
processing at the team or group level.

Information regarding the sequential patterns of communication and the flow of
communication among team members (Bowers, Jentsch, Salas, & Braun, 1998) is critical
to the assessment of collaborative cognition. In general, efforts in this area are hampered
by the paucity of methods and tools for measuring communication in a cost-effective way
(i.e., automated analyses, task-embedded, while exploiting its richness).

Before addressing our approach to this problem, we provide some background on
theories, methods, and empirical fimdings relevant to communication.

3.2 Theories and Models of Communication

Theories and models of communication have evolved in their consideration of the
continuous, complex, and directed nature of communication. For instance, early
communication models were based on physical processes, such as electric current (Beebe
& Masterson, 1997). Communication was thought to serve the function of reducing
uncertainty, by sending information to the appropriate receivers in a mathematically
defined stimulus-response pattern. For example, in the Shannon-Weaver model,
information goes from the sender through a channel containing noise, to a receiver.
Theories such as this one have been applied to communication, though with recognition
of the interchangeable roles of sender and receiver in typical discourse (Smith, 1994,
Wegner, 1995).

Further, within communication networks that arise from groups of communicators, most
communication is not to the group, but to specific members of the group (Beebe &
Masterson, 1997). For example, individuals may direct most of their comments to their
nearest neighbors, or to the group's facilitator. Once a group has developed a
communication pattern, they tend to stick to it. Groups with more equal communication
structures tend to take longer to generate decisions, but the decisions tend to be more
accurate. The transmission of private information to the group through artifacts and
through transient communication generates a sort of group cognition and group memory
(Smith, 1994). However, it is inappropriate to try to communicate all personally held
information to the group, because one virtue of groups is that everyone need not know
everything about every task (Smith, 1994, Wegner, 1995).

Communication theories also consider the richness of the context surrounding
communication. Factors thought to influence communication include culture (Merrit &
Helmreich, 1996), context of the communication, the size of the group or team, and group
identity (Beebe & Masterson, 1997). As an example of a theory that incorporates these
factors, structuration theory describes these and other factors as goals and conditions,
which are then used to create rules that the group evaluates with respect to goals, and
revises as necessary. Symbolic convergence theory focuses on the development of a
common identity for the group, by engaging in mutually fulfilling social interactions.
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The increasing complexity of communication theories and models has led to a need for
communication analysis methods that capitalize on and make sense of the richness of
communication data.

3.3 Traditional Methods for the Analysis of Communication

Most commonly, analyses of communication data have either focused on low-level
quantitative measures, such as duration of communication, or on encoding the
communication into prescribed content categories (Contractor & Grant, 1996). The
former approach can be used to capture some of the complexity of communication
patterns through time by modeling the quantitative measures using lag sequential and/or
Markov chains, time series modeling, Fourier analysis (Watt & VanLear, 1996, p. 12) or
other methods (Sanderson & Fisher, 1994). We refer to such data and analysis as
communication flow.

The other common approach to communication analysis involves first selecting a coding
scheme that includes all interesting categories of communication meaning, such as the
rules being displayed in the conversation, the types of speech, or the actual meaning of
the discussion. The transcribed discourse is then divided into the smallest units of
meaning, then those pieces of text that correspond to the categories of interest are tagged
(Emmert & Barker 1989). Communication patterns can be analyzed either as frequency
counts of the categories or as a series of events (called "interaction analysis", for
discussion, see Emmert, 1989; for an example, see Poole, Holmes, Watson, & DeSanctis,
1993), using lag sequential analysis or other tools (see Holmes, 1997 for an example).
We refer to these data and analyses as communication content.

Both flow and content approaches have their own merit, and their own costs. For the
content approach, multiple coders are intensively trained, and must have adequate
agreement. Emmert and Barker (1989) cite an example of a study requiring 28 hours of
transcription and encoding for each hour of communication (p. 244). But the advantage
is that interpretable qualitative data are captured, including, in some cases, nonverbal
communication (Donaghy, 1989). Flow approaches are much easier in data collection
(although speaker, listener, and communication duration is often tedious to transcribe
from audio tape), but fail to explicitly capture semantics. Both approaches have been
used to analyze communication among groups larger than two, but the transcription and
encoding tasks become even more cumbersome as the complexity of the communication
and the possibility for parallel discourse streams increases. Content techniques are
especially prone to these difficulties.

In summary, there is a general consensus that continuous streams of rich data are
necessary to describe the unfolding process of communication, but that automatic
methods for doing this are sparse or problematic (Smith, 1994). If researchers are
interested in modeling the flow of who talks to whom and for how long, human raters
must record and time-stamp these data. Content is even more labor intensive, since it
requires that human raters first transcribe, then classify the discourse into prescribed
categories.
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3.4 Team Communication: Empirical Findings

Parallel .to the methods used to analyze more general communication, team or
collaborative communication can be defined by flow (e.g. Oser, Prince, Morgan, &
Simpson, 1991) and content (e.g., content codes). In terms of flow, results from static
measures have been equivocal. In some cases studied, high performing teams
communicate with higher overall frequency than low performing teams (Foushee &
Manos, 1981; Mosier & Chidester, 1991; Orasanu, 1990), but in other cases this finding
has not been supported (e.g., Thornton, 1992). Some studies indicate that overall
communication frequency is reduced during high workload periods (Kleinman & Serfaty,
1989; Oser, et al., 1991), whereas others indicate increases in communication frequency
under relatively high workload (e.g., Stout, 1995). Some of these differences may be due
to other factors such as the task or the nature of the teams. For example, Bowers, Urban,
and Morgan (1992) found that the correlation between communication frequency and
team performance was tied to whether the team was hierarchical or not in structure. In
other cases, mixed results may be due to the use of static flow measures, devoid of
semantic content or sequential information.

Communication content associated with team studies has been analyzed by segmenting
transcripts into units associated with speech turns or complete thoughts. Then the
segmented transcript is coded using categories pertinent to the hypothesis or research
problem. Some examples of content categories include speech acts such as
acknowledgments, requests, statements, or answers to questions; errors such as violation
in standard format; and use of terminology such as standard military terms. Results tend
to be more specific (but perhaps less generalizable) than those associated with flow
analyses. For instance, Achille, Schulze, and Schmidt-Nielsen (1995) found that the use
of military terms, acknowledgments, and identification statements increased with
experience. Similarly, Jentsch, Sellin-Wolters, Bowers, and Salas (1995) found that
faster teams made more leadership statements and more observations about the
environment than slower teams.

Also parallel to general trends in communication analysis, advances in team
communication analysis and understanding may come from extending analysis beyond
single dimensions such as frequency of content category to more complex patterns,
taking into account multiple dimensions including content, frequency, sequence, and
communication flow. For instance, Bowers et al. (1998) analyzed the sequence of
content categories occurring in communication in a flight simulator task. They found that
high team effectiveness was associated with consistent responding to uncertainty,
planning, and fact statements with acknowledgments and responses, in comparison to
lower performing teams. Similarly, Bowers, Braun, and Kline (1994) found that a two-
category sequence was superior to simple frequencies at predicting performance on an
aerial reconnaissance task. On the basis of results like these, Salas, Bowers, and Cannon-
Bowers (1995) conclude "It is likely that additional pattern-based analyses will emerge in
future literature as a means to understand the impact of communication on team
performance" (p. 64).
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In summary, research on team or collaborative communication can focus on flow or
content, and on sequential or static data. The most promising methods are sequential
(either flow or content). Though much more difficult to collect, content methods do
provide more specific, qualitative results than flow methods. A major obstacle in this
kind of research is the costliness of manual analysis needed to transcribe and code
content, and to analyze sequential flow or content data. Salas et al. (1995), highlight this
research need and state, "... methods to interpret team process information, which until
now has been almost exclusively a manual task, would benefit from automation" (p. 69).
Indeed, collaborative cognition work in general is hampered by the paucity of automated
methods and data collection limits. The methods that we will apply in this project take
advantage of the richness of collaborative communication data, but are at least partially
automated, making these methods more practical for the assessment of collaborative
cognition.

4.0 OBJECTIVES

The overall objective of this project is to apply communication analysis methods to data
sets collected in two experiments in a three-person ground control simulation of a UAV.
Further, the setting was either distributed or co-located and workload varied. The
communications methods applied here are semi-automated and more cost-effective than
traditional manual methods and should ultimately facilitate the meaningful analysis of an
extremely rich source of data on teams. Data resulting from these analyses provide a)
information on the impact of factors such as distributed environments, high workload,
and cognitive differences among teams (e.g., team situation awareness, shared mental
models) on team communication and performance and b) methods for further exploiting
communication data as an index of team performance.

This reported effort capitalizes on five specific capabilities of our research team and
facility:

1) The experimental environment of the CERTT Lab offers a realistic command
and control team task and provides a rich set of measures relevant to team
performance and cognition.

2) Data collected in Experiments 3 and 4 in the CERTT-UAV environment
specifically provide results from measures of team performance and cognition,
as well as communication data.

3) Previous research has been dedicated to identifying valid measures of team
performance, team process, team knowledge, and team situation awareness in
this context. The reported work will leverage off of these developed metrics to
test the new communication metrics.

4) The CERTT Lab's communications hardware and software automatically
captures (at designated intervals) the communication flow that occurs in either
direction between all pairs of individuals on a team. In addition, our research
team has the expertise to apply Latent Semantic Analysis to the text generated
in the course of communication.
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5) The set of communication analysis methods developed and evaluated under the
efforts of the previous ONR grant (see next section).

Our main objective can be divided into seven discrete tasks, not including reporting tasks:

1. Apply Communication Analysis Methods: Complete transcription of
communication data from Experiments 3 and 4 and apply methods identified in
previous work as having the most promise to these data.

2. Examine Method Validity: Do the analytic methods generate communication
patterns that are predictive of team performance? Do the results obtained in
the new experiments correspond to those of our initial study? Do they
correspond to communication findings in other similar studies? Are
methodological refinements indicated by the data?

3. Examine the Team Performance-Communication Relationship: How do
communication patterns map onto team performance? Can we make any
general statements about the communication patterns of effective or ineffective
teams?

4. Investigate Co-located (F2F) vs. Distributed Collaboration: How do
communication patterns change in distributed (vs. F2F/face-to-face)
environments? Do these changes correspond to performance changes? Is there
evidence of team adaptation through communication?

5. Examine Impact of Workload on Communication and Performance: How
do communication patterns change with increasing workload and with
associated performance decrements? Do teams adapt communication to
changing workload? How does communication change when faced with a
communication breakdown (see glitch description below)? Is the impact of the
communication breakdown moderated by the environment (i.e. distributed vs.
F2F)?

6. Investigate Link Between Communication and Shared Mental Models: How
does the nature of the environment (i.e. distributed vs. F2F) affect the
development of shared mental models or shared knowledge structures and how
does communication relate to shared mental model development?

7. Examine Relation Between Communication and Team Situation Awareness:
How does the nature of the environment (i.e. distributed vs. F2F) affect the
development of team situation awareness and how does communication relate
to the development of team situation awareness?

5.0 METHODOLOGICAL BACKGROUND

This effort relies on the data collected from teams in the context of the CERTT-UAV task
using multiple measures of team performance, process, and cognition. In this section, we"
first describe the CERTT-UAV task. We follow this with a description of the measures
used in this context, starting with the communication measures and analytic techniques
that are central to this effort.

5.1 The CERTT-UAV Task
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In 1998, we designed and developed a synthetic team task environment (CERTT UAV-
STE) that is an abstraction of the Predator Uninhabited Air Vehicle operations (Cooke,
Rivera, Shope & Caukwell, 1999; Cooke & Shope, 2002; Cooke, Shope, & Rivera,
2000). CERTT's UAV-STE is a three-team member task in which each team member is
provided with distinct, though overlapping, training; has unique, yet interdependent roles;
and is presented with different and overlapping information during the mission. The
overall goal is to fly the UAV to designated target areas and to take acceptable photos at
these areas.

The AVO (Air Vehicle Operator) controls airspeed, heading, and altitude, and monitors
UAV systems. The PLO (Payload Operator) adjusts camera settings, takes photos, and
monitors the camera equipment. The DEMPC (Data Exploitation, Mission Planning and
Communication Operator) oversees the mission and determines flight paths under various
constraints. To complete the mission, the team members must share information with
one another and work in a coordinated fashion. Most communication is via microphones
and headsets, although some involves computer messaging.

The CERTT UAV-STE was abstracted from results of a cognitive task analysis (Gugerty,
DeBoom, Walker, & Bums, 1999) of the Predator operational environment, with the goal
of providing an experimenter-friendly test-bed for the study of team cognition. As a
result, cognitive aspects of the task are emphasized and other task components (e.g., the
specific interface, stick-and-rudder control) have been omitted. For instance, alterations
in the interface enable individual team members to rapidly acquire (within 1.5 hours) the
skills and knowledge needed to work as an integral part of the team.

5.2 Communication Measurement and Analysis

The communication analysis methods that we have developed and applied take two main
forms: 1) methods that focus on the content of communications, and 2) methods that
focus on communication flow between team members. The content of communication
(i.e., the discourse among team members and the experimenters) is recorded on digital
audio tape and video tape and later transcribed by humans to generate a text file. Latent
Semantic Analysis (LSA) is then applied to this file. The communication flow data are
collected relatively automatically using a time-stamped intercom system resident in the
CERTT Lab, which is described more fully below. Flow methods are then applied to the
data logged from this system.

5.2.1 Latent Semantic Analysis

Latent Semantic Analysis is a fully automatic mathematical/statistical technique for
extracting and inferring relations of expected contextual usage of words in passages of
discourse. It is not a traditional natural language processing or artificial intelligence
program; it uses no humanly constructed dictionaries, knowledge bases, semantic
networks, grammars, syntactic parsers, or morphologies, or the like, and takes as its input
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only raw text parsed into words defined as unique character strings and separated into
meaningful passages or samples such as sentences or paragraphs.

The primary assumption of LSA is that there is some underlying or "latent" structure in
the pattern of word usage across contexts (e.g. paragraphs or sentences within texts), and
that statistical techniques can be used to estimate this latent structure. Through an
analysis of the associations among words and contexts, the method produces a high-
dimensional representation in which words that are used in similar contexts will be
represented as being more semantically associated. Using this representation, words,
sentences, or larger units of text may be compared against each other in order to
determine their semantic relatedness or additionally assessed for magnitude or salience
within the high-dimensional space. A brief overview of the technical approach to
applying LSA will be described here. Additional details may be found in Berry (1992),
Deerwester, Dumais, Fumas, Landauer, and Harshman (1990), Landauer and Dumais
(1997), and Landauer, Foltz, and Laham (1998).

In order to analyze a text or texts, LSA first generates a matrix of occurrences of each
word in each context (e.g., sentences or paragraphs). In this pre-processing stage, each
cell of the matrix contains a transformation of the frequency of the occurrences of each
word. The transformation typically used is the log of the frequency of the word times the
entropy of its frequency across all contexts. Transforms of this or similar kinds have long
been known to provide marked improvement in information retrieval (Harman, 1986),
and have been found important in several applications of LSA. The transforms are
important for correctly representing a passage as a combination of the words it contains
because they emphasize specific meaning-bearing words.

LSA then applies singular-value decomposition (SVD), a form of factor analysis, or more
properly the mathematical generalization of which factor analysis is a special case. The
SVD scaling decomposes the word-by-context matrix into a set of k, typically 100 to 300,
orthogonal factors (or dimensions) from which the original matrix can be approximated
by linear combination. Instead of representing contexts and terms directly as vectors of
independent words, LSA represents them as continuous values on each of the k
orthogonal indexing dimensions derived from the SVD analysis. Since the number of
factors or dimensions is much smaller than the number of unique terms, words will not be
independent. For example, if two terms are used in similar contexts, they will have
similar-vectors in the reduced-dimensional LSA representation. One advantage of this
approach is that matching can be done between two pieces of textual information, even if
they have no words in common.

One can interpret the analysis performed by SVD geometrically. The result of the SVD
is a k-dimensional vector space containing a vector for each term and each document.
The location of term vectors reflects the correlations in their usage across documents.
Similarly, the location of document vectors reflects correlations in the terms used in the
documents. In this space, the cosine or dot product between vectors corresponds to their
estimated semantic similarity. Thus, by determining the vectors of two pieces of textual
information, we can determine the semantic similarity between them. Additionally, the
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geometric interpretation provides for the assessment of the domain salience of textual
information via the vector length, or norm, within the vector space.

The number of dimensions retained in LSA is an empirical issue. Because the underlying
principle is that the original data should not be perfectly regenerated but, rather, an
optimal dimensionality should be found that will cause correct induction of underlying
relations, the customary factor-analytic approach of choosing a dimensionality that most
parsimoniously represents the true variance of the original data is not appropriate.
Instead some external criterion of validity is sought, such as the performance on a
synonym test or prediction of the missing words in passages if some portion is deleted in
forming the initial matrix.

LSA's performance has been evaluated as a representational model and measure of
human verbal concepts and has been used for a wide variety of applications that require
the analysis of the conceptual content of textual material. LSA's performance has been
assessed in several ways: (1) as a predictor of query-document topic similarity
judgments in information retrieval (Deerwester et al., 1990); (2) as a simulation of agreed
upon word-word relations and of human vocabulary test synonym judgments (Landauer
& Dumais, 1997), (3) as a simulation of human choices on subject-matter multiple choice
tests, (4) as a predictor of text coherence and resulting comprehension (Foltz, Kintsch &
Landauer, 1998), (5) as a simulation of word-word and passage-word relations found in
lexical priming experiments (Landauer & Dumais, 1997), (6) as a predictor of subjective
ratings of text properties, i.e. grades assigned to essays ( Foltz, 1996; Foltz, Laham &
Landauer, 1999; Rehder, Schreiner, Wolfe, Laham, Landauer, & Kintsch, 1998), (7) as a
predictor of appropriate matches of instructional text to learners essays (Wolfe,
Schreiner, Rehder, Laham, Foltz, Kintsch, & Landauer, 1998), and (8) as a predictor of
team communication performance (Kiekel, Cooke, Foltz, and Shope, 2001).

While assessing the performance of LSA, the above tests also permit the derivation of
applications that incorporate LSA for measuring the conceptual content of textual
information. Existing applications have included information retrieval and filtering
programs, techniques for automatically scoring and commenting essays, methods
determining the appropriate training material for individual learners, and methods for
analyzing discourse between patients and therapists. In this project, similar approaches
are employed in order to analyze and categorize the discourse of team communication.

Specifically, there are four LSA-based metrics that have been developed and favorably
evaluated (under prior ONR funding) in the context of a separate data set (also taken
from the UAV task context). These metrics will be applied to the two data sets from
Experiments 3 and 4, respectively. The metrics include: 1) LSA-based performance
scoring, 2) lag coherence, 3) communication density, and 4) automatic tagging. We can
also predict performance from LSA-based measures that score performance based on
previous scores. Using a method similar to that used to score essays with LSA (Landauer,
et al. 1998), we used the transcripts to predict the team performance score. We generate
the predicted team performance scores was as follows: Given a subset of transcripts, S,
with known performance scores, and a transcript, t, with unknown performance score, we
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can estimate the performance score for t by computing its similarity to each transcript in
S. The similarity between any two transcripts is measured by the cosine between the
transcript vectors in the UAV-Corpus semantic space. To compute the estimated score for
t, we take the average of the performance scores of the 10 closest transcripts in S,
weighted by cosines (this works also if the other missions for the given team are excluded
from consideration). Lag coherence measures are predictive of performance. The
procedure is as follows: a) Take the cosine between each utterance vector and its sequel,
b) Average the cosines over various lags (e.g., 36 lag moving window). c) Calculate
regression equation predicting log of the cosines from log of the lag for each team-at-
mission, and d) Take slope estimate of this as a measure of topic shifting or mission
coherence. Communication density is based on the total sum vector length of all
utterances in a given team-at-mission transcript and the number of words contained in the
same. It thereby, extends word count to account for the amount of meaningful content
being expressed by team members. Automatic tagging ultimately allows content category
(e.g., acknowledgement, question) to be coded automatically. The procedure is as
follows: a) For each utterance within a team-at-mission transcript, find the most
semantically similar utterances in other transcripts that have already been tagged, b)
Assign aprobability of tags to that utterance. Overall, these four LSA-based metrics
provide a means for automatically understanding the content, amount, and quality of
information being conveyed by team members, individually or as a whole.

5.2.2 Communication Flow Data

The CERTT (Cognitive Engineering Research on Team Tasks) facility has unique and
specific capabilities to support the automated recording of communication flow data.
That is, team participants (up to four plus an experimenter) communicate with one
another over military aviation headsets with microphones. The noise isolating properties
of the headphones along with the use of noise-canceling
microphones makes it nearly impossible to hear extraneous
noise. The audio isolation and the physical shielding
provided in the design of the consoles results in the
participants becoming rapidly immersed in a task.
Furthermore, the audio and physical isolation provides a
strong incentive for 'all participants to communicate through
the headsets.

Figure 1. Headset

The digital communications system is quite advanced and highly flexible. The system
design allows a talker (who initiates a communications episode) to select a listener or a
group of listeners. The talker initiates communications by pushing and holding down a
push-to-talk (PTT) button. All communications are designed as simplex. In other words,
when A is talking to B, B cannot automatically talk to A without B pushing A's PTT
button. We treat A talking to B as a distinct event as compared to B talking to A. The
system is additive for incoming communications traffic. For example if A is talking to B
and C also begins talking to B, then B hears a mixed audio signal composed of A and C
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added together. The system allows for simultaneous networked communications. For
example, A can talk to B and C while at the same time D is talking to A and B.

Additional features of the system allow the participants to be listening over the headsets
to the computer audio output, which includes alarms, warnings, and other audio clues
built into the task scenario. Communications traffic, when present, over-rides the
computer audio. The computer audio will return when the communications to a
participant ceases. The system allows audio noise including static, random noise, pre-
recorded distracting noise such as jet engine sounds, and non-relevant communications to
be added to a particular communications link. This has the effect of making some links
less attractive to use than others. Furthermore, we can completely disable any individual

•link in the system with the throw of a switch. For example we can allow C to talk to D
but disallow D's talking to C (in Experiment 3 we disabled communications between the
DEMPC and AVO for five minutes).

Figure 2. Experimenter's Communications Control Panel

The headset microphone output for each participant is recorded continuously, even when
the PTT button is not depressed. This allows spurious individual utterances and talk-
aloud statements to be recorded in addition to the intentional communication episodes.
We record this microphone data on an 8-channel digital audio tape deck using a 48 kL~z
sampling rate. These recordings are of digital production quality. We also generate a
mixed composite of all 8 channels and record this on the audio track of our video camera
recorder. Two or more conversations or a message with an ambiguous sender can be
disambiguated using this 8-track feature.
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Most relevant to the communication flow problem, however, is the CERTT Lab's
capability to record the precise timing and duration of messages from specific senders to
specific receivers. In addition to the digital nature of the entire communications system,
this capability is the result of two other features:

1) A push-to-talk button that must be depressed for the duration in which a
message is being sent in order to be heard by the listener, and

2) Separate push-to-talk buttons are associated with each listener. So; for example,
to talk to one team member, one PTT button is depressed. To talk to two team
members and the experimenter, three PTT buttons are simultaneously
depressed.

Our custom communication logging software samples the positions of the push-to-talk
buttons at a user-selectable sample rate. We initially used a 1 Hz sample rate. However,
during analysis of the COMLOG/video tape recordings in the previous ONR effort, we
audibly detected some voice communication episodes on tape that were not depicted in
the COMLOG data. We found that some significant communication episodes can be less
than one second in length. To eliminate this problem, we have now moved to a higher
sampling rate of 8 Hz (1/8 second sampling interval) reflected in the data of Experiment
4.

An n x n matrix is used to represents the state of the communication network made up of
n team members. The rows represent senders and the columns, receivers. At each sample
interval, we record a snapshot of this matrix. This matrix represents all possible states of
the communications network, including asymmetric or directed communications. The
link-disable feature described above is reflected in this matrix by certain elements always
being in the "off' state.

This automated collection of communication flow data (who is talking to whom and for
how long), enables investigators to bypass the manual step of transcription and coding the
transcript in terms of the sender, receiver, and duration of the message. The resolution is
also much greater than possible with human observers. For example, at an 8 Hz sample
rate, we record the 25-element matrix eight times a second. In a one-hour task, this
represents 720,000 pieces of distinct communications data.

This automation is not only cost-effective in terms of eliminating tedious transcription
and encoding steps, but it also assures virtually error-free data without the need for
human judgments about the identity of senders, receivers, or timing of the messages.
Further, human judgments regarding the identity of the listener are virtually impossible to
discern. Thus, the data collected by the communication logger can allow for rapid
sequential and pattern analyses on large communication data sets. Questions concerning
overall communication frequency, sender-receiver communication patterns, and various
sequential dependencies can be readily answered with these data. This leaves more time
to be spent analyzing (e.g., lag sequential analysis, log linear analysis, ProNet (Cooke,
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Neville, & Rowe, 1996; Cooke & Gillan, 1999; Gillan & Cooke, in press)) the
communication flow data.

The analysis of communication flow is critical to understanding team communication.
To understand team cognition such as team situation awareness and shared mental
models, the issue of not only what information is passed among team members, but also
how that information is passed (i.e., to whom and by whom and at what time) is critical.
To maintain team situation awareness for instance, the right information has to make it to
the right individual at the right time. Information content, therefore, is only a part of the
picture, and a very small one without timely delivery of that content to the team member
who needs it. The CERTT data collection capabilities, combined with adequate pattern
and sequential analyses, should help shed light on these types of issues.

Five methods to analyze the communication flow data have been developed and
favorably evaluated (under a previous ONR-funded effort) in the CERTT-UAV context
using a separate data set. They include: 1) dominance, 2) flow quantity (CRP), 3) flow
sequence (ProNet), 4) stability (CHUMS), 5) flow as a team process surrogate. This suite
of five methods is called FAUCET (Flow Analysis of Utterance Communication Events
for Teams).

We can predict team performance from dominance based on very simple communication
log measures. The calculation of the dominance statistic is easily automated and involves
looking at the cross correlations among team members of speech quantity. The result is a
ratio that indicates the degree of influence that one team member has over the others in
regard to speech quantity. Specifically dominance is calculated as in Table 1.

Table 1
Dominance Metric

Start with a time series of mean speech quantity for each team member over
some small number of seconds. The number of seconds in an average is taken
to be either 1/2 the mean speech duration, or 5 sec (whichever is longer).

* Take all pairwise cross-correlation functions between all team members.
* For each team member predicting each other team member, take the weighted

average of the cross-correlation function, where the weight is the inverse of the
lag.

0 For each team member predicting each other team member, take the ratio of one
mean cross-correlation to the other (i.e. person A to B's correlation is divided
by the correlation for B to A).

* Take the natural log of all of these ratios. Because of the properties of the
correlation coefficient, this ratio will be approximately normally distributed,
with a mean of zero and a standard deviation of 1.
For each team member, the pair of log ratios can be averaged, yielding a mean
score of influence that the team member exhibits over other team members.
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Flow quantity is simply a metric representing the amount of speech to and from each
team member. CRP (Communication Required and Passed) scores measure how far a
team deviates from an ideal in terms of relative speech ratios, across the whole mission.
Ideal speech ratios indicate how much each team member should speak to each other
team member. CRP analyses yield a score for each team member, which is itself an
aggregate of two components ("chat" and "information!,' components). Low scores
(approaching 0) indicate high deviance from this overall ratio, and high scores
(approaching 1) indicate that the team is speaking in approximately ideal ratios.
Specifically, CRP is calculated as in Table 2.

Table 2
CRP Metric

"* Start with a separate sum of every second when team member X is talking to team
member Y. Let us define the total sum of seconds that x spends speaking to some
other person y as Cxy. Create a proportion, relative to all possible seconds.

"* For each team member, take the proportion of time that that person is either speaking
or being spoken to. Take the converse of this proportion, to yield a positive
correlation with performance. This is the "Chatter" score.

"* Define the minimal amount of speech each team member must convey to each other
team member to complete the mission. For team member X talking to Y, this can be
defined by the number of sentence clauses X must convey (or request) from Y (bxy),
times the number of events requiring this transmission (Uxy), times an arbitrary
constant of how long it takes to convey a single clause (k).

"* Ideally, Cxy= Uxy(bxyk)for all persons y, x.
* Therefore, ideally, for person x, CYx/Cz = [Uyx*(byx*k)]/[Uzx*(bzx*k)]
"* Therefore, ideally, Cyx/Czx = [Uyx*byx]/[Uzx*bzx]
* Therefore, ideally, {Cyx/Cx} / {[Uyx*by.]/[Ux*bzx]} = Cyx*Uz*bz x *b

=1

"* Take min(1Cyx*Uzx*bx}/{Cx*Uyx*byx}, I / [{Cyx*U,*bzx}/{Cx*Uyx*byx}]) to retain
a 0-1 scale.

"* This is the "Information Passing" score.
"* For each team member, multiply "Chatter" by "Information Passing" to get a

"Communication Required and Passed" (CRP) score.

Flow sequence adapts a sequential data analysis procedure called ProNet (Cooke,
Neville, & Rowe, 1996) to define representative chains of sequential patterns of speech.
ProNet can be used to define representative chains of sequential patterns in the events
defined by each team member beginning or ending a speech sequence. Summary
statistics are taken on lengths of the set of chains remaining for each team-at-mission.
Chain length is a measure of how much stability is found in the set of utterances, on
average. Therefore, mean chain length, for example, is a single measure of
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communication stability. Other measures include median, minimum, maximum, standard
deviation, etc.

The stability of the communication log data is captured by a procedure called CHUMS.
CHUMS models the team at discrete time intervals (in this case minutes), then aggregates
the models based on model fit. In this case, the models are multinomial models of how
much each team member speaks. Two variations of the model are a) categories including
each person speaking, plus the "null" event (when no-one is speaking) or b) categories
that do not include "null" events. CHUMS gives a single value for the team, such as
models remaining after clustering, or models per minute. These statistics reveal how
many statistically distinct patterns of relative speech quantity the team exhibited during
the mission, and so is a measure of communication stability. Teams with more stable
communication styles will exhibit fewer distinct models and models per minute. A
negative correlation between process variables and number of CHUMS models indicates
that teams with more stable communication also tend to score higher on process
measures. Specifically CHUMS is calculated as in Table 3.

Table 3
CHUMS Metric

"* First the communication log files are separated into one-minute intervals.
"* For each minute, model the communication frequency of each team member,

with a multinomial model.
"* Use the model for each minute to test the data for each other minute, using a

chi-square approximation to the multinomial test.
"* Perform an iterative agglomerative cluster analysis on the minutes of the

mission, using model fit as a distance measure.
"* Count the number of remaining clusters.

Team performance scores can be adequately predicted from individual scores aggregated
using the communication data as an estimate ofprocess behavior. This work forms
Preston Kiekel's M.A. project for Experimental Statistics, which was successfully
defended in May of 2003. Basically, three communication-based functions of individual
performance scores were defined to convert them into a commensurate form with the
team performance score. The specific procedure is outlined in Table 4.
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Table 4
Process surrogate

"* Three communication-based functions of individual performance scores were defined
to convert them into a commensurate form with the team performance score. All
three consisted of first proportionalizing the individual performance score. Then said
score is:

* multiplied by the CRP score defined above,
* multiplied by the Dominance score defined above, and
* multiplied by a proportionalized score from an observational process

check list.
"* Three aggregation schemes'are employed on the transformed individual scores

yielded by each of these three functions. The sets of individual scores were therefore
converted to single scores to be correlated with performance. A total of nine
aggregates were taken, in that each of the three functions above were then aggregated
by:

* arithmetic mean
minimum

• geometric mean
"* The arithmetic mean of the untransformed individual scores is taken as a

parsimonious baseline.

5.2.3 Team Performance Measures

Prior to the start of this effort, team performance metrics had been validated in the
CERTT-UAV context. Team performance is measured in the CERTT-UAV task using a
composite score based on the result of mission variables including time each individual
spent in an alarm state, amount of fuel used, amount of film used, number of missed
targets, number of critical waypoints missed, time spent in a warning state, and route
sequence violations. Penalty points for each of these components are weighted a priori in
accord with importance to the task and subtracted from a maximum score of 1000.
Specifically, missed targets are weighted four times that of fuel and film used and alarm
time is weighted two times fuel and film used. Critical waypoints missed and route
sequence violations are weighted three times fuel and film used. Warning time is
weighted the same as fuel and film used. Team performance data were collected for each
30-40-minute mission.

In the experiments of interest to this project, missions differed on the basis of number of
target waypoints (that needed to be photographed). Low workload missions contained 9
targets for a 40-minute (maximum) mission and high workload missions contained 20.
Thus, a team that gets photographs of nine targets in both types of missions (comparable
team performance) would score lower in the high workload mission, simply because
there were more targets to miss.



Cooke, et al. FINAL REPORT - ONR N00014-03-1-0580 27

Therefore, modifications were made to our previous metric of team performance in order
to base team performance on the rate with which tasks were completed (e.g., number of
photos per minute) rather than the proportion of tasks that were completed (e.g., number
of photos taken out of total possible). This revision accommodates scoring of the high
workload scenario, and other variations of the mission scenarios, and prevents penalizing
teams for not achieving similar proportions of outcome across different scenarios. For
example, the new team performance metric, which is based on rate of performance, does
not penalize teams for photographing a smaller proportion of targets in the high workload
missions (e.g., 12 out of 20) despite the improvement from the low workload missions
(e.g., 9 out of 9).

Furthermore, in order to make the team score more independent from the individual role
scores, we removed penalties for fuel, film, and route sequence violations, as these
penalties are specific to only one role. Finally, the relative weighting scheme used in the
team performance and individual role performance metrics was also revised to better
differentiate between team and individual tasks or components. For example, the
"missed or slow photo penalty" component was given lower weight for the PLO score but
higher weight for the team score, as this task requires, effort on the part of all team
members and is not solely the PLO's responsibility. In general, components of the
individual role performance metrics were given a higher weight if those components, or
tasks, were controlled solely by that role.

Each individual role within a team (AVO, PLO and DEMPC) also had a composite score
based on various mission variables including time spent in alarm or warning state as well
as variables that were unique to that role. Penalty points for each of the components were
weighted a priori in accord with importance to the task and subtracted from a maximum
score of 1000. The most important components for the AVO were time spent in alarm
state and course deviations, for the DEMPC they were critical waypoints missed and
route planning errors, and for the PLO, duplicate good photos, time spent in an alarm
state, and number of bad photos were the most important components. Individual
performance data for a role were collected for each of the seven missions.

Score results are displayed to team members after each mission. In addition to the
individual and team scores for that mission, team members are able to see individual and
team scores from previous missions of their team and other teams.

5.2.4 Team Process Measures

Team process metrics have been validated in the CERTT-UAV context. Team process
behavior is scored independently by each of the two experimenters. In Experiments 3 and
4 for each mission the experimenters observe team behavior and respond to a series of six
questions. Three of these items concern team behaviors that did or did not occur at
designated event-triggers in each mission (e.g., within five minutes after the end of the
mission, the team discusses and assesses their performance). These items are scored with
either a 0 (not present) or 1 (present). The other three items also assess team behaviors
that did or did not occur at designated event-triggers in each mission, but these items are
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scored on a scale that ranges from very poor/none (0) to either good (2) or very good (3).
The sum of scores on these six items is then expressed as a proportion of total possible
points (10) for a given mission. This proportion forms the critical incident process score
for each mission and team.

Four summary scores for each team are also used to assess team process for a given
mission. Summary scores are based on experimenter judgments on four dimensions
(communication and coordination, team decision-making, team situation awareness
behaviors, and process behaviors) which are scored on a five-point scale that ranges from
1 (terrible) to 5 (excellent). Experimenters are aided when making their judgments by
informal tallies that are kept for each dimension throughout the session.

5.2.5 Team Knowledge Measures

Team knowledge measures (including team situation awareness) have been validated in
the CERTT-UAV context. For Experiments 3 and 4 we measured three forms of team
knowledge: 1) team situation awareness (fleeting knowledge or situation models that the
team has of the task and team at any one moment), 2) taskwork knowledge, and 3)
teamwork knowledge. Situation awareness is measured during each mission. Taskwork
and Teamwork knowledge are measured in two or more separate sessions set apart from
the task.

Team situation awareness is measured using two SPAM-like (Durso, Hackworth, Truitt,
Crutchfield, and Nikolic, 1998) queries administered at two randomly selected 5-minute
intervals during each mission. One of the experimenters administers the queries to each
individual in turn and then to the team as a whole. This latter query is an attempt to
elicit team knowledge in a more holistic manner. Order in which individuals is queried is
also random.

One of the two queries requires team members to make a prediction regarding the number
of targets out of nine (or 20, depending on the level of workload) successfully
photographed by the end of the mission, and the other query varies with the mission but
generally requires prediction. The experimenter also records the correct responses to
these queries given how the situation plays out and this key is used to score the eight
responses for accuracy. Team accuracy scores are based on the sum of all individuals'
accuracy scores. Responses to all queries are also scored for intrateam similarity. Team
similarity is the sum of all the pairwise similarities of the three team members.

The team's knowledge of the task (i.e., team taskwork knowledge) is measured using a
pairwise relatedness rating task. The taskwork ratings are made by team members on
pairs of eleven task-related terms: altitude, focus, zoom, effective radius, ROZ entry,
target, airspeed, shutter speed, fuel, mission time, and photos. All possible pairs of these
terms are presented in one direction only, one pair at a time. Pair order is randomized
and order within pairs is counterbalanced across participants. Each team member rates
the relatedness of each pair on a 1-5 scale with anchors that range from slightly related to
highly related. There is also an option of unrelated.
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Taskwork consensus ratings consist of the same pairs as taskwork ratings (randomly
presented), however the ratings are entered as a team. For each pair, the rating entered in
the prior session by each team member is displayed on the computer screen of that team
member. The three team members discuss each pair over their headsets until consensus
is reached. Again, consensus measures are taken to elicit knowledge at the team-level.

Teamwork knowledge is measured using a questionnaire. A task scenario is first
described and then each individual participant is required to indicate which of sixteen
specific communications are absolutely necessary in order to achieve the scenario goal.
The teamwork consensus ratings are administered in the same manner as the teamwork
ratings, but are completed on a team level where team members discuss their answers
over the headsets until a consensus is reached.

Taskwork and teamwork knowledge measures are scored for accuracy and intrateam
similarity. Individual accuracy scores and pairwise measures of response similarity are
averaged across team members. For the two rating tasks, data are first submitted to
KNOT (using parameters r=inf. And q=n-1) in order to generate Pathfinder networks
(Schvaneveldt, 1990). These networks reduce and represent the rating data in a
meaningful way in terms of a graph structure with concept nodes standing for terms and
links standing for associations between terms. A referent network generated by the
experimenters serves as the key, and similarity of any one network to this referent in
terms of the proportion of shared links is used as a measure of accuracy. In addition, the
individual task ratings are scored not only against a key representing overall knowledge,
but also against role-specific keys. In this way, measures of "role" or "positional"
accuracy, as well as "interpositional" accuracy (i.e., interpositional knowledge (IPK) or
knowledge of roles other than their own) can be determined. Team accuracy is the mean
accuracy across team members. Intrateam similarity is measured using the proportion of
shared links for all intrateam pairs of two individual networks (i.e. the mean of the three
pairwise similarity values among the three networks).

5.2.6 Summary of Measures.

In the proposed work we plan to leverage off of the various measures developed and
validated previously in the CERTT-UAV context (see Table 5 below) as a basis for
evaluating our communication metrics. All measures are taken at every mission except
taskwork and teamwork knowledge which are taken in separate sessions apart from the
missions. Communication is recorded continuously during each mission. Team
knowledge measures are taken at the individual and team level. At the individual level
knowledge measures are scored for accuracy (overall and positional) and intrateam
similarity in order to provide a knowledge profile of the team. Our goal in the proposed
effort is to 1) determine the validity of the communication metrics outlined in Table 5 in
terms of their ability to discriminate high vs. Low performing teams and high vs. low
knowledge teams. In addition, we plan to test hypotheses regarding the impact of
workload and distributed mission environments on team communication and
performance.
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Table 5
Measures taken in Experiments 3 and 4

MEASURES
Validated in Previous Efforts New Communication Metrics

(require further validation)
Team performance score (rate version) Content - LSA-based density
Individual performance score Content- LSA-based performance score
Team process-critical incident Content - LSA-based automatic tagging
Team process-summary rating Content- LSA-based lag coherence
Team knowledge-situation awareness queries Flow - Dominance
Team knowledge - teamwork knowledge Flow - Quantity: CRP

Flow - Sequence: ProNet
Flow - Stability: CHUMS
Flow - Team process surrogate

6.0 TECHNICAL APPROACH AND RESULTS

In the following sections, we describe the data sets that we worked with and detail
our technical approach associated with the seven tasks of the proposed effort.

6.1 Two CERTT-UAV Data Sets

We currently have communications data from two experiments, each in the context of a
three-person Uninhabited Air Vehicle (UAV) synthetic task. This synthetic task is based
on actual UAV ground operations. The goal is for the team to safely fly the UAV to
targets and to orient the vehicle so that good photographs of the targets can be taken. The
three team members have different roles and the mission can only be accomplished by
interaction and information sharing among the three roles. Each team member is trained
on unique material and has access to two unique information displays. For instance, the
Air Vehicle Operator (AVO) is trained to navigate the UAV to specific waypoints and to
adjust speed and altitude based on restrictions and photograph requirements. The AVO's
displays and controls are centered on these navigation tasks. In addition, each operator
has a unique screen to monitor in order to avoid system alarm states. This particular
feature enables the manipulation of workload in the scenario. Flexible task software
also allows for rapid scenario changes (e.g., target locations, hazard locations).
Communication takes place over headsets with microphones. As mentioned in the
previous section, communication data consists of audio captured on a digital 8-track
audio recorder, audio recorded on video tape, as well as communication log data
indicating sender, receiver, and message duration. In addition, other measures including
task-embedded individual and team performance measures, team process measures, team
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situation awareness measures, and measures of individual and team taskwork and
teamwork knowledge are taken.

In Experiment 3 (data collected in fall of 2001 and spring 2002), communications data
were recorded over seven consecutive 40-minute missions for 20 three-person teams of
NMSU undergraduates. Half of the teams were co-located and half were distributed.
Teams were randomly assigned to either a co-located or distributed condition. In the co-
located condition the three team members were in view of each other during and between
missions, though they communicated over headsets during missions. In the distributed
condition, team members never saw each other or the screens of the other applications
and communicated solely over headsets. Missions 1 through 4 were low workload
scenarios with 9 targets and missions 5-7 were high workload scenarios with 20 targets
and additional route constraints. During the 6 th mission communications between the
DEMPC and the AVO were severed for 5 minutes after the first ad hoc target was called
in by the experimenter. Missions were performed in two sessions, both occurring within
48 hours of each other. Session 1 also included a 1.5-hour training session (factual and
skill-based). Knowledge was measured in Session 1 immediately after training and again
in Session 2 after the seventh mission. Performance, process, and situation awareness
measures were taken, along with communication measures for each mission. In addition,
other measures were taken that are not the focus of this effort. They include demographic
data, leadership questionnaires, subjective measures of situation awareness and workload,
and measures of individual working memory. The main goal of this experiment was to
examine the effects of distributed mission environments on team skill acquisition and
skilled performance.

Experiment 4 (data collected in fall 2002) was a replication of Experiment 3 with 20 all
male teams. This was done in order to reduce some variation attributed to mixed gender
teams in Experiment 3 mission. Experiment 4 procedures were the same as those for
Experiment 3 except that all male teams were obtained, there were 5 missions (with the
last one being high workload), and only one knowledge measurement session that
occurred after mission 3.

The tasks below were conducted using the data sets collected in the two experiments
described in the previous section.

6.2 Hypotheses

Based on the team and communication literature as well as previous results from two
other CERTT-UAV experiments, we formulated hypotheses about team performance,
cognition, and communication under the conditions described in the previous section.
We have broken these down by task. We will discuss them in turn within each task
section.
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Table 6
Hypotheses associated with Tasks 2 through 7

Task/Hypothes Hypothesis
is Number

2.1 Communication metrics, if valid, should be correlated with
performance scores.

2.2 Functions relating performance and communication metrics should
generalize across studies.

3.1 Teams with higher performance scores will have greater disparity
among communication flow dominance scores.

3.2 High-performing teams will have (according to the flow sequence
analysis) more completed speech cycles and fewer interruptions than
low-scoring teams.

3.3 High-performing teams should have longer mean chain lengths in the
sequential flow analysis than low-performing teams.

3.4 High-performing teams will have fewer patterns of communication
frequency (in terms of flow stability metric) than low performing
teams.

3.5 Better teams will follow assertions or action statements with
acknowledgements as based on LSA coding, more than ineffective
teams.

3.6 Better teams in terms of performance will have communication
efficiency scores that fall within a mid-level range.

3.7 As team skill is acquired, we predict that individual teams will start
out as inefficient and then proceed to being overly "efficient" and
finally reach the point of optimal efficiency.

3.8 Effective teams will demonstrate greater coherence at longer lags
compared to ineffective teams who will demonstrate less coherence
at longer lags.

3.9 Individually, teams should start out with small lag coherence and at
asymptotic levels of performance should demonstrate greater lag
coherence.

4.1 Performance-communication relationships identified under Task 3
should be stronger in the distributed condition than the co-located
condition.

4.2 We expect LSA-based coding to reflect more teamwork and non-task
related communications among distributed teams than co-located
teams.

4.3 The communication differences found in 4.2 should dissipate with
experience.

5.1 Teams will communicate less under high workload than low.
5.2 LSA-based coding will indicate more action-oriented

communications under high workload compared to low.
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5.3 The patterns in 5.1 and 5.2 are expected to hold more for high-
performing teams than low.

5.4 High-performing teams should be faster to switch into and out of the
alternative communication paths employed during communication
breakdowns than low-performing teams.

5.5 Under low workload, high-performing teams should have high
coherence scores, but under the later high workload missions, higher-
performing teams should have lower coherence scores.

6.1 Teams with more taskwork knowledge should have longer mean
chain lengths representing communication flow.

6.2 Teams with high levels of teamwork knowledge should exhibit more
stability in terms of communication flow.

6.3 Increased interpositional knowledge and intrateam similarity should
correspond to decreases in communication frequency.

7.1 Teams with higher levels of team situation awareness will follow
statements with acknowledgements.

7.2 Differences in team situation awareness will be reflected by changes
in flow patterns.

6.3 Task 1: Apply Communication Analysis Methods

6.3.1 Method

The flow methods described above (dominance, flow quantity, flow sequence, CHUMS-
based stability, and flow as a process surrogate) were applied to the communication log
data collected during the course of each mission. A emerged with the sampling rate for
comlog data was increased between experiments. The comlog sampling rate was a
technical problem for Dominance and CHUMS-based Stability measures. It was in both
cases by averaging over one second, so that there was still a single value between 0 and 1
for each second. We applied all five comlog methods to Experiments 3 and 4 (ProNet,
Dominance, CRP, CHUMS, and Team Process Surrogate).

In order to apply the LSA-based content analysis techniques to the Experiments 3 and 4
communications data, the audio data was first transcribed. Software that integrates our
digital intercom data with the audio recordings facilitates this prqcess and was developed
as part of this effort. Videotapes are first digitized (i.e., converted to mpeg file format).
Our transcription software then makes use of the communication log (speaker, listener,
data) data, which is synced with the digitized video. The transcriptionist is presented
with a window displaying the identity of the speaker and listener, as well as time. The
transcriptionist then types what is said in the space provided. The transcription software
also tags the transcripts with XML tags needed by the LSA software. These tags indicate
speaker, listener, and duration information.
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However, we experienced a significant bottleneck in the transcription process, resulting
in a large lead for application of flow methods and a large lag for application of content
methods. During this process we also identified a ComLog header - transcription
interface incompatibility that resulted in errors in sequencing mission utterances. These
had to be largely corrected by hand, resulting in further delays. Ultimately, these hiccups
lend support to the hypothesis that automatic speech recognition would indeed be
preferable to hand transcription. The finding at the end of this section that LSA measures
are relatively robust to speech recognition errors in comparison to straight transcription
supports this, objective.

Four transcripts from Experiment 3 were not viable. Additionally, four missions from
Experiment 4 were un-transcribed due to incomplete comlog files. Segments (e.g.,
individual utterances by team members) were compared to each other and generally
assessed within a derived semantic space based on a corpus of domain-relevant
-information, including interviews with subject matter experts, UAV training materials,
and UAV transcripts. This approach permits the assessment of the amount of semantic
relatedness of utterances between team members and across communication channels.
Additionally, by computing the vector lengths of utterances, we derived a measure of the
density (or quality) of information being communicated in a mission. These measures
therefore provided an indication of both how domain-relevant information was being
communicated and how much it was being communicated. Because LSA provides a
continuous measure of relatedness, the measures can be automatically converted into
maps showing how the quality and relatedness of information flows among team
members through their communication channels. LSA-based performance scoring, lag
coherence, communication density, and automatic tagging metrics and procedures
described in the methodological background section were applied to the resulting
transcripts.

6.3.2 Results

Under this task the nine flow and LSA-based methods listed earlier in Table 5 were
applied to the data from Experiments 3 and 4. In addition, there were several other
methodological developments that were achieved under this task and applied to the same
data. These include:

* Metrics to evaluate tagging agreement for LSA-based automatic tagging and
automatic speech recognition case

* A keyword-based method to provide a baseline for LSA
* A Web-based LSA interface

These miscellaneous developments are described in the following results section.

6.3.2.1 LSA tagging. Our goal is to use semantic content of team dialogues to better
understand and predict team performance. One approach is to look at the dialogues as a
whole, which we will discuss later. The approach we focus on here is to study the
dialogue on an utterance or turn level. To this end we chose the Bowers Tag Set and
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manually annotated the transcripts. We then developed an algorithm to tag transcripts
automatically, resulting in some decrease in performance, but a significant savings in
time and resources.

The Bowers tag set. Bowers and colleagues (1998) analyzed the sequence of content
categories occurring in communication in a flight simulator task. They found that high
team effectiveness was associated with consistent responding to uncertainty, planning,
and fact statements with acknowledgments and responses in comparison to lower
performing teams. We used the same tags developed by Bowers et al. to categorize
statements made by team members. A subset of the statements was manually annotated
and then these annotations were compared against an automatic tagging performed by
LSA. The tags developed by Bower et al. are shown in Table 7.

Table 7
Bowers Tag Set

Tag Definition Explanation
A Acknowledgment One-bit statements answering the previous statement, such as

"yes," "no," "roger;" Could also follow an action.
AN Action Statements that require a particular crewmember to perform a

specific action-- including the speaker, immediate, precise,
like a command.

EXP Experimenter Non-task communications that were directed to or came from
the experimenter.

F Factual Statements that verbalize readily observable realities of the
environment, any objective facts (even if wrong), including
statements of immediate past action ("I did this...").

NT Non-task Non-task related statements.
P Planning Statements-- not always person specific, less immediate, less

specific than AN, anything relevant ONLY in the future of
the mission, has to be affirmative, not a question, not just one
WP into future.

Q Unknown Can't be tagged.
R Response Statement that are differed from acknowledgments only in

that they conveyed more than one bit of information-- A plus
more info.

U Uncertainty Statements which included direct and indirect questions.

Manual annotation for Experiment I data. Three annotators, two psychology graduate
students familiar with the project and one undergraduate, each tagged 26 or 27 team-at-
missions (in the Experiment 1 data set), using the Bowers' Tag Set, so that 12 team-at-
missions were tagged by two annotators. Initially, we chose to measure inter-coder
reliability using the C-value measure (Schvaneveldt, 1990).
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The C-value was chosen for its ability to handle arbitrarily long sequences of tags for a
given turn and cases where taggers assigned sequences of tags of different lengths to a
given turn. Turns consist of one or more utterances by a single speaker and it is possible
that each utterance could have a different tag. For example:

"DEMPC to A VO. Okay SEN1 has speed of max 200, and altitude between 3000
and 5000. You need to go a little bit to your right. Effective radius offive miles."

was tagged as "F" by one tagger and "F-AN-F" by another, where:

"F" indicates (objective) factual statements, and
"AN" indicates an action statement which

requires a crew member to perform a specific action.

The C-value for a turn is computed by taking the number of tags in the intersection of the
sets of tags assigned by the taggers, divided by the union of these sets. So in our example,
the two sets are {F} and {F, AN}. The intersection is {F} and the union is {F, AN}, so
the C-value is 1/2 or 0.50. The C-value for a turn ranges between 0 and 1, where 0
indicates an empty intersection of the tag sets, or complete disagreement, and 1 indicates
that the union and intersection contain the same number of tags, or complete agreement.
Once the C-value is computed for each turn in a team-at-mission, we compute the
average C-value for the team-at-mission by summing the C-values for the turns and
dividing by the number of turns in the team-at-mission. Similarly, we compute the
average C-value for the corpus (or any desired subset of the corpus).

The C-value for the 12 team-at-missions that were tagged by two annotators was 0.70.
This value was used as the benchmark upon which to compare our automated tagging
approaches.

Table 8 below shows the frequency of tags in the 12 transcripts tagged by two taggers.
We can establish a baseline of tagging performance of 0.27, by noting that if all
utterances were tagged with the most frequent tag, "F", our percentage correct would be
27%, as shown in Table 8.

Table 8
Tag Frequency Percentages

Tag Percentage of
Occurrences

F 27
A 24
U 17
AN 15
R 15
Other (P, Q, NT) 2
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Automatic annotation with LSA. In order to test our algorithm to automatically annotate
the data, we computed the "corrected tag" for all 2916 turns in the 12 team-at-missions
tagged by at least two taggers. We used the union (no repetitions) of the sets of tags
assigned by the taggers as the "corrected tag". For example see Table 9.

Table 9
"Corrected Tag" Example

Tagger 1 Tagger 2 Corrected
Tag

F-AN A-F-AN-F-AN A-F-AN
F-AN R-AN F-R-AN
R-AN F-R-AN F-R-AN
R A R-A
R A-AN-F R-A-AN-F

The union, rather than the intersection was used since taggers more frequently missed
relevant tags within an utterance and thus the union of multiple taggers might capture all
likely tag types within the utterance.

Then, for each of the 12 team-at-mission transcripts, we automatically assigned "most
probable" tags to each turn, based on the corrected tags of the "most similar" turns in the
other 11 team-at-missions. For a given turn, T, the algorithm proceeds as follows:
Find the turns in the other 11 team-at-mission transcripts, whose vectors in the semantic
space have the largest cosines, when compared with T's vector in the semantic space. We
choose either the ones with the top n (usually top 10) cosines, or the ones whose cosines
are above a certain threshold (usually 0.6). The corrected tags for these "most similar"
turns are retrieved. The sum of the cosines for each tag that appears is computed and
normalized to give a probability that the tag is the corrected tag. Finally, we determine
the predicted tag by applying a cutoff (0.3 and 0.4 seem to produce the best results): all of
the possible tags above the cutoff are chosen as the predicted tag. If no tag has a
probability above the cutoff, them the single tag with the maximum probability is chosen
as the predicted tag.

We also computed the average cosine similarity of T to its 10 closest tags as a measure of
certainty of categorization. For example, if T is not similar to any previously categorized
turns, then it would have a low certainty. This permits the flagging of turns that the
algorithm is not likely to tag as reliability.

We applied the above algorithm to the transcripts with turns involving the experimenter
role removed, because those interactions are generally irrelevant to team performance and
might interfere with tag sequence analysis.
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Finally, we computed the C-value between the tag predicted by the computer and the
corrected tag. The results are shown in Table 10.

Table 10
Values for LSA Algorithm

Method C-Value Av. Cert. Cut Turns
Top 10 0.56 0.61 0.3 2916
Thresh 0.6 0.59 0.65 0.3 2507

In Table 10, "Top 10" indicates the algorithm that selects the ten most similar turns,
while "Thresh 0.6" indicates the algorithm that selects similar turns where the cosine
between the vectors is greater than 0.6. "Av. Cert." is the average certainty. "Cut" is the
cutoff value. "Turns" is the total number of turns included in the calculations. Note that
the total number of turns in the 12 team-at-mission transcripts is 2916 The number of
turns considered is reduced from 2916 to 2507 when the algorithm with threshold 0.6 is
used, because turns where no turn vectors have a cosine greater than 0.6 are excluded.
Based on the C-Values, the two methods perform only 20% and 16% below the
performance of human-human agreement. Considering that the approach only uses one
measure, a semantic similarity measure, but ignores any syntactic measures, the results
are quite promising.

In order to improve our results, we considered ways to incorporate simple discourse
elements into our predictions. We used two discourse features:

1. For any turn with a question mark, "T', we increased to probability that uncertainty,
"U", would be one of the tags in its predicted tag.

2. For any turn following a turn with a question mark, "?", we increased to probability
that response, "R", would be one of the tags in its predicted tag.

We refer to our original algorithm with these two discourse features added as "LSA+"
algorithm. Using LSA+ with our two methods now performs only 11% and 10% below
human-human agreement, as shown in Table 11.

Table 11
Values for LSA + Algorithm

Method C-Value Av. Cert. Cut. Turns
Top 10 0.62 0.58 0.3 2916
Thresh 0.6 0.63 0.65 0.4 2610
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Thus, the results suggest that we can automatically annotate team transcripts with tags.
While the approach is not quite as accurate as human taggers, LSA is able to tag an hour
of transcripts in under a minute. As a comparison, it can take half an hour or longer for a
trained tagger to do the same task.

Computing Cohen's Kappa. A commonly used coefficient of inter-coder agreement for
discourse and dialogue studies is Cohen's Kappa (Cohen 1960), which takes into account
chance agreement. Cohen's Kappa is defined:

K = P(o) - P(e)
1 - P(e)

Where P(o) is the proportion of agreement observed, and P(e) is the proportion of
agreement expected by chance. In order to improve the comparability of our results to
work in the discourse processing community we computed Kappa for our inter-coder
agreement. For the observed agreement we used the C-values (computed as discussed
above). Traditionally in tests of agreement, the proportion of expected agreement can be
easily computed because only one tag is assigned to each utterance. In this case, since a
tagger could assign one or more tags to each utterance, P(e) was estimated by running a
Monte Carlo simulation.

In the Monte Carlo simulation for each of n iterations, we randomly choose the number
of tags, k, for turn i, based on the frequency of tag length for turns in the corpus, and then
randomly choose k tags for turn i, based on the frequency of tags in the corpus. We then
do the same for turn i+1 and compute the C-value of agreement between the randomly
assigned tags for turn i and turn i+1. This procedure is repeated n times and the average
C-value is computed. We ran our simulation for n equal to five million and the average
C-value was 0.21. This approach provides an accurate estimate of expected chance
agreement, P(e), under the assumption that taggers use the same frequencies of tags as
those who participated in the study. The results of using P(e) = 0.21 in the formula for
Kappa are shown in Table 12.

Table 12
Kappa and C Values

Coders-Agreement C-Value Kappa
Human-Human 0.70 0.62
LSA-Human 0.59 0.48
LSA+-Human 0.63 0.53

Issues arising with the computation and interpretation of Kappa have been discussed by
many authors, including: Grove et al. (1981), Carletta (1996), Di Eugenio (2000). Of the
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scales that have been proposed for interpretation of Kappa, Di Eugenio (2000) notes that
the discourse processing community has generally adopted Krippendorff's (1980) fairly
strict scale. It discounts any variable with K< 0.67 and allows tentative conclusions when
0.67 < K < 0.8. There are other less strict scales, for example, Rietveld and van Hout
(1993), which considers 0.42 < K < 0.6 as indicating moderate agreement and 0.61 < K <
0.8 as indicating substantial agreement. According to Grove et al. (1981), the psychiatric
community considers K > 0.6 or K > 0.5 as acceptable. Based on the range of these scales
and the complexity of the tagging task we believe that we have moderate agreement in
the "Human-Human" and "LSA+-Human" categories

Automated speech recognition. Using data collected from another project that performed
automated speech recognition (ASR) on three of the transcripts from Experiment 1, we
tested LSA's ability to tag the ASR data. Rong and Rudnicky at CMU ran an experiment
to determine baseline speech recognition accuracy on three of the transcripts in our
corpus. We ran our LSA + Syntax algorithm to predict the tags on their output. Word
error by the speech recognition system (Sphynx) was 38.9%. Loss of tagging accuracy,
measured by C-value, was 14.9% when compared to using the original transcripts.
Preliminary results indicate that noise introduced by current speech recognition
technology may be mitigated by LSA's ability to detect semantic similarity.

6.3.2.2 Keyword analysis. We investigated alternative methods for evaluating
communication content, including word counts and key word indexing (KWI), in order to
begin to understand what additional power our more sophisticated (e.g., LSA, CRA)
methods provided. Word counts are relatively straightforward. Essentially, the number
of words-per-utterance were tallied and further aggregated to the desired degree of
granularity, e.g., average words per utterance, average number of words in transcript, etc.
KWI is a bit more complex, but allows us to compute vector lengths, cosines, and
distances between utterances in a transcript. Similar to LSA, in KWI vector length is
taken as a measure of domain relevance, cosines measure relatedness between utterances,
and distances give a metric for proximity between utterances within a vector space.
However this is where the similarities end. LSA makes a significant technological
contribution by introducing elements of semantic reasoning into the model. KWI on the
other hand derives its measures based on direct keyword overlap.

To find the key words, we compared 67 Experiment 1 transcripts (197,769 words) to a
publicly available reference corpus of American business discourse (42,724 words) using
the freely distributed WordSmith Tools program in order to identify words that were used
with unusual frequency in our UAV task. We then computed the relative frequencies of
key words in the 67 Experiment 1 transcripts. From this we determined a set of super key
words (words that are prototypical forms of other key words; e.g., "waypoint" is the
super key word of "LVN", "H-area", etc.). To further define the key word space, we
associated weights to the various super key words (super key word weights are also
assigned to all key words in their set). The weights, w(f), were computed from the
relative frequency (f) of the super key words relative to one another (borrowing from
Shannon's entropy formula: w(f) = -f log(f)). This weighting insured that the less
frequent keywords were weighted heavier proportional to their degree of uncertainty than
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more frequent key words (e.g., waypoint names were weighted heavier than
"restriction"). The key word space consisted of 31 super key words and their weights
(see Table 13):

Table 13
Key words and weights

S Key Word Weight S Key Word Weight S Key Word Weight
accept 0.01 go 0.06 plo 0.05
after 0.03 good 0.03 radius 0.03
air 0.03 have 0.06 restriction 0.03

altitude 0.05 I 0.08 right 0.03
at 0.03 intel 0.03 roger 0.05

avo 0.05 mile 0.03 speed 0.05
be 0.06 need 0.03 target 0.06
can 0.04 next 0.04 we 0.07

dempc 0.04 now 0.03 waypoints (all) 0.10
effective 0.02 okay 0.06

get 0.03 photograph 0.06

Based on KWI vector lengths and word counts for our set of 67 original transcripts, we
assessed four relatively low level content measures: Vector - mean vector length of
utterances in a transcript; Words - mean number of words per utterance in a transcript;
KWIDensity - the ratio of mean vector length to mean word length in a transcript; and
Weighted words - the product of mean word length and mean vector length in a
transcript. We then looked to see if there were main effects of team or mission on the
various KWI vector/word length measures:

Table 14
Effects of Team or Mission on Keyword Indices

DV Team Mission
Vector F (10,50) = 6.42** F (6,50) = 5.44**
Words F(10,50) = 13.48** F(6,50)= 1.39
KWIDensity F (10,50) =22.18** F (6,50) = 5.40**
Weighted F (10,50) = 8.55** F (6,50) = 1.93"
*p_<.10, **p<.01

Based on the results in Table 14, each of the KWI measures varied significantly over
teams and missions. The word count statistic did not vary significantly over missions.
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6.3.2.3 Web-based LSA interface. During the course of preparing the LSA tools for
analyzing the new data we developed a web interface http://bluff.nmsu.edu/-ahmed/ for
automatic analysis of discourse. The interface provides two facilities:

" Discourse Analysis:
The user can paste or upload discourse (e.g. a team-at-mission transcript) to a web
page that automatically returns a new web page with some statistics about the
discourse, including LSA coherence and vector length, and suggested tags. In
addition, we have augmented the LSA coherence computations that the system
can handle to allow for lag n. For example, the original program computed
coherence between turn i and turn i+1, now we can compute the coherence
between turn i and turn i+n, where n is set by the user. This enables the
user to get a fuller picture of the coherence of the team's discourse.

"* Predict Performance Scores:
Programs to predict overall team performance scores based on whole team-at-mission
transcripts have been incorporated into our web-based system. A user can now upload
or paste in a transcript and the system will automatically return a predicted
performance score for the transcript. The user has the choice to choose the number of
closest transcripts to be used in the prediction. The number that could generate the
best prediction is still to be found. That number will be made as the default value
unless the user chooses different number.

As part of this project, a web-based demonstration system was developed that could take
incoming transcripts of teams and generated automated performance scores. A screen
shot of the system is shown in Figure 3. It illustrates the output of the analysis of a
transcript displaying a number of LSA and other statistics that can be useful for
characterizing the quality of the team's performance. In addition to basis statistics about
the transcript as a whole, it computes the frequencies of the predicted tags. In the
discourse section, the predicted tags, their certainty, coherence with the next turn, and
vector length (measure of information content of the turn) are shown next to the
discourse.
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Table 15
Hypotheses Associated with Task 2

Task/Hypothesis Hypothesis Supported?
Number

2.1 Communication metrics, if valid, should be correlated Yes
with performance scores.

2.2 Functions relating performance and communication Yes
metrics should generalize across studies.

6.4.2 Results

Results are first described for LSA-based measures and then for flow-based (i.e.,
FAUCET) measures.

6.4.2.1 LSA-Basedperformance score. As a reminder, to compute the estimated score
for t, we take the average of the performance scores of the 10 closest transcripts in the
space, weighted by cosines. The holdout procedure was used in which the score for a
team's transcript was predicted based on the transcripts and scores of all other teams (i.e.
a team's score was only predicted by the similarity to other teams). Our results indicated
that for Experiment 1, the LSA estimated performance scores correlated strongly with the
actual team performance scores (r = 0.76, p < 0.01), as shown in Figure 4. Thus, the
results indicate that we can accurately predict the overall performance of the team (i.e.
how well they fly and complete their mission) just based on an analysis of their transcript
from the mission.

1000

900

,ISA 800
Pre~dicted 70
Team 600
Performance -

score .500

300
300 400 500 600 700 800 900 1000

Actual Team Performince score

Figure 4. Correlation: Predicted and Actual Team Performance for Experiment 1

To test our algorithm to predict team performance using LSA on whole transcripts, we
repeated our experiment using the Experiment 3-Corpus and Experiment 3 semantic
spaces. Using the 10 closest transcripts, as before, the LSA estimated scores strongly
correlated with the actual scores (r = 0.75).
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To demonstrate the generalization of our algorithm over varying semantic spaces, we also
compared the correlation of estimated and predicted team scores for Experiment 1 and
Experiment 3 transcripts using the Experiment 1-3-4 semantic space. The results, shown
in Table 16, confirm that performance is not significantly changed by using a larger,
more general, semantic space. It further shows that LSA is robust over a range of
different sized corpora.

Table 16
Predicted-Actual Scores Correlations When Varying Semantic Spaces

EXPI EXP3 EXPI13_4 Difference

EXP1 0.76 0.77 +1%

EXP3 0.75 0.72 -4%

Generalization of team performance scores for different corpora. While the results were
successful for the Experiment 1 corpus, it is important to determine if similar results can
be found for the other two corpora. In addition, it is important to determine if the
algorithm to predict team performance using whole transcripts can operate successfully
by training the algorithm on the performance scores of one corpus in order to predict
performance scores on another corpus. This approach would be equivalent to having
collected N transcripts from teams flying UAVs on a set of particular missions and then
trying to predict a new set of teams performing a different set of missions. Thus, the
generalization test, determines how robust such a system could be in more realistic
contexts where different teams may have to fly entirely novel missions.

We tested the generalization for the Experiment 3 set of transcripts, by training our
algorithm on the performance scores of Experiment 3 performance scores and predicting
the performance scores from the other experiment (Experiment 4). Using the 10 closest
transcripts, as before, the LSA estimated scores strongly correlated with the actual scores
or Experiment 3, showing only a four percent degradation in performance (see Table 17.).
Thus, there was a high level of generalization from one training corpus to predicting the
performance scores of another.

Table 17
Predicted-Actual Score Correlations When Varying the Training Set

Training Set

EXP 3 EXP 4 Difference

S0.72 0.66 -4%



Cooke, et al. FINAL REPORT - ONR N00014-03-1-0580 46

Varying the dimension of the semantic space for performance prediction using whole
transcripts. In all previous results reported for team score prediction using whole
transcripts, the dimension of the semantic space created by LSA was set at approximately
300, which has been shown in to be the best size to capture the complexity of human
language on a variety of other tasks. To verify that this holds true for out UAV data, we
tested dimensions 100, 200, 300, 400, 500 and 600 on the Experiment 1 and Experiment
3 data sets. The results are shown in Table 18.

Table 18
Correlations between predicted and actual scores as dimension of semantic space varies

Experiment Dimension Correlation
EXP 1 100 0.786803723
EXP 1 200 0.760132232
EXP 1 300 0.786847128
EXP 1 400 0.745200698
EXP 1 500 0.743739265
EXP 1 600 0.748404337
EXP 3 100 0.113699842
EXP 3 200 0.628493896
EXP 3 300 0.738088108
EXP 3 400 0.708010772
EXP 3 500 0.722278549
EXP 3 600 0.735669498

These preliminary results appear to confirm that the best choice for the dimension of the
LSA- created semantic space is 300.

Automatic speech recognition. We showed that LSA works adequately using transcripts
based on current speech recognition software, despite the limitations of the state-of-the-
art in speech recognition. We used speech recognition error rates from Schmidt-Nielsen,
Marsh, Tardelli, Gatewood, Kreamer, Tremain, Cieri, Strassel, Martey, Graff, and Tofan
(2001).We then introduced similar errors in existing (typed) transcripts to represent
synthetic speech errors (e.g., insertions, deletions, substitutions). Finally, we tested
LSA's effectiveness at predicting team scores at different error rates. Results vary with
transcription error rate, and show 80% reliability at speech recognition error rates up to
57%.

6.4.2.2 LSA-Based automatic tagging. In order to test the ability of our automatic
tagging algorithm to generalize, we trained a new annotator. He was trained on the
Experiment 1 corpus and in testing achieved good agreement with the previous
annotators: Kappa was 0.72. Given this level of agreement we had him tag 20 randomly
selected transcripts from each of Experiment 3 and Experiment 4 (approximately 24% of
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the total discourse in these corpora). We were then able to compare our automatically
predicted tags for Experiment 3 and Experiment 4 to his tags (see Table 19).

Table 19
LSA + - Annotator Agreement

EXPI EXP3 EXP4
Kappa 0.53 0.56 0.54
C-value 0.63 0.66 0.64

The results indicate that humans can consistently use the Bowers tag set across the three
corpora and that the LSA+ algorithm can consistently predict the tags.

We were also able to show generalization across semantic spaces: training on the tags in
Experiment 1 to predict tags in Experiment 1, produced equivalent Kappas (to two
decimal places) using the Experiment 1 and Experiment F 1-3-4 semantic spaces. In
addition we varied the set of tags used for training. In the Experiment 1-3-4 semantics
space, predicting tags for the Experiment 3 corpus showed only a 5% degradation in
performance when the system was trained on the Experiment 1 tags rather than on the
Experiment 3 tags (Table 20). We believe this demonstrates the robustness and ability to
generalize, at least within the UAV-STE domain, of the LSA+ algorithm.

Table 20
Generalization of tagging based on other semantic spaces

Training Set

EXP 3 EXP 4 Difference

E0.72 0.66 -4%

6.4.2.3 LSA-Based density and lag coherence. As described previously, the transcript
density measure is the ratio of average LSA vector length to average number of words
per utterance per mission. Transcript density is thus a relative measure of the average
domain relevant content of utterances within a mission transcript.

The lag coherence measure is the least-squares slope between average LSA cosine and
lag between utterances up to 35 utterances away. Thus this measure is an average
correlation over a 36-utterance moving window taken for each transcript.

The mean transcript densities and lag coherence by experiment are presented in Table 21.
Figure 5 shows mean transcript density (a) and mean lag coherence (b) by mission for
Experiments 1, 3, and 4.
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Table 21
Mean Transcript Density and Lag Coherence for Experiments 3 and 4

Experiment Experiment
3 4
Density Lag Coher Density Lag Coher

N 85 85 60 85
Mean 0.057 -0.179 0.057 -0.146
SD 0.005 0.066 0.005 0.045

0.07 -0.05

----- Experiment 1 - -4, -- Experlment I

0.06l . .. * - - Experiment 3 -0.15 _____ _ I____ - - - - Experiment 3
-- - Experiment 4 . - . Experiment 4

0.05 -0.25
1 2 3 4 5 6 7 1 2 3 4 5 6 7

misson mission

(a) (b)
Figure 5. Mean transcript density (a) and mean lag coherence (b) by mission for
Experiments 1, 3, and 4.

For content metrics we examined two types of validity. First, we examined whether or
not the functional forms (i.e., number and direction of terms) were consistent across
experiments, and second we examined predictive validity. Functional form was analyzed
using baseline results from Experiment 1. Mean squared prediction error (MSPE) across
models was examined by using estimates from the baseline Experiment 1 transcript
density and lag coherence models to predict Experiment 3 and 4 team performance
(outcome) scores. The variance of the residual score, [(performance - predicted
performance) 2]/number of observations, was the estimate of mean squared prediction
error. The average ratio of MSPE/MSE, where MSE is taken from the original model, is
reported. These results are presented in Table 22.
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Table 22
Validation Results for Transcript Density and Lag Coherence

Task 2
Measure Experiment Functional Form MSPE
Density 1 pos linear, neg quadratic 1.5

3 neg linear, pos quadratic
4 neg linear, pos quadratic

Lag Coher 1 pos linear 2.5
3 pos linear
4 neg quadratic

Overall, these results suggest that the density measure exhibited higher validity than the
coherence measure. First, while inconsistent with Experiment 1, the functional forms
were similar for the density measure between Experiments 3 and 4. Lag coherence had a
different pattern with Experiments 1 and 3 leading to similar functional forms, which
were different from Experiment 4. These results provide partial support for H2.2. The
overall prediction variance however, was on average smaller for the density measure.

In addition to these analyses, we also asked ourselves the question what is the relation
between the basic LSA density component, vector lengths, and "leaner" measures of
content such as word counts and keyword counts, and how might this relate to the overall
validity of the density measure. Correlations over 20,545 utterances between these
measures are shown in Table 23. The results indicate that it is highly likely that LSA
vector length derives most of its variance from the length, in number of words, of
utterances. This could result from one of two things. First, LSA vector is a measure of
word counts. Or second, and most probably, task-related talk comprises the lion's share
of the utterances in our transcripts. In either case however, this result suggests that the
density measure may not have as good "face" validity as we initially thought, since it is
apparently comprised of the ratio of two measures of word counts, however they are
derived. On the other hand, a measure correlated with LSA vector lengths, KWI vector
lengths, was found to share less variance with straight word counts. In a subsequent set
of analyses we report on using KWI vector lengths in density ratios, in comparison to
LSA density ratios.

Table 23
Correlations Between LSA Density Component and Other Content Metrics

LSA KWI
Vector Vector
Length Length

Word Count .944* .699*
LSA Vector Length - .725*

Note. N= 20,545; *p < .001
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6.4.2.4 FAUCETmetrics. The FAUCET methods of most value were the measures
derived from our Dominance method, CRP, ProNet, and CHUMS. We also analyzed the
Process Surrogate method for the first study, but dropped it in subsequent analysis. We
decided that the measure was too similar to dominance and CRP. Overall the flow-based
metrics were predictive of team performance.

The way we handled FAUCET comparison to basic measures was through covariance.
The FAUCET findings used total amount of speech as a covariate in the analyses, so that
any FAUCET findings are known to be above and beyond the relationship between the
basic flow measure, and the criterion.

Specific comparisons between experiments for the FAUCET measures (H2.2) are found
in the performance section. In general, the hypothesis was supported with most of the
measures. For example, CHUMS measures showed that number of models (a measure of
communication instability) was negatively correlated with performance in both of the
latter studies. This was also found for the ProNet stability measure, which was positively
related to performance in both of the latter studies.

Dominance findings. Only T-l dominance scores are independent, where T is the
number of team members. The last score is determined by the others. The set of T-I
independent dominance scores are adequate predictors of performance. This includes
analysis of these data in four studies. Statistically detectable mission-by-mission
correlations ranged from R = .63, (F(2, 15) = 4.90, p=.02 3) to R = .75, (F(2, 8) = 5.18,
p=.036). More specific analyses for individual dominance scores revealed that AVO
dominance tended to be a good predictor of performance, though valence was
inconsistent (e.g. for Mission 4 of the third study, R = .441, F(14) = 3.37,p = .088; for
Mission 3 of the fourth study, R = -.415, F(1, 15) = 3.12,p = .098).

CRPfindings. The set of all three CRP scores are adequate predictors of performance.
This includes analysis of these data in four studies. Statistically detectable mission-by-
mission correlations ranged from R = .65, (F(3, 14) = 3.14,p=.062) to R = .81 (F(3, 7)
4.61, p=.044). More specific analyses indicated that PLO's CRP score was the most
important predictor (e.g. for the omnibus test of the third study, after adjusting for
repeated measures, R = .20, F(1, 90) = 3.946,p = .050; PLO's information component, R
= .22, F(1, 87)=4.421, p = .038).

ProNetfindings. The minimum, median, sum, and maximum chain lengths for each
team-at-mission were the best predictors of performance. Statistically detectable
mission-by-mission multiple correlations ranged from .52 (F(1, 9) = 3.42, p = .098) to .79
(F(2, 8) = 5.07, p = .051). For the first study, a model including minimum, median, and
sum tended to yield better predictions for early missions, while the minimum alone was
the best predictor for later missions. For the third study, the sum and maximum tended to
be good predictors throughout. Surprisingly, very few good predictions were found for
the fourth study. Analyses of communication flow sequence using ProNet detection have
revealed that some new speech sequences that are predictive of performance. Results
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indicate that longer detectable sequences (and hence more regular communication
patterns) are generally linked to better performance and process.

CHUMS findings. Number of clusters and clusters per minute are adequate predictors of
performance. Statistically detectable mission-by-mission correlations for number of
clusters ranged from R = .54 (F(1, 9) = 3.63, p = .089) to R = .61 (F(1, 8) = 4.75, p =
.061), orR = .45, (F(l, 16) = 4.10,p = .060) to R = .49, (F(1,8) = 2.56,p = .148) for
clusters-per-minute. Number of clusters and clusters per minute are also adequate
predictors of situation awareness. Statistically detectable mission-by-mission
correlations were R = .65, (F(1, 8) = 5.93, p = .041), for clusters-per-minute, and R = .62,
(F(1, 8) = 4.982, p = .056), for number of clusters.

Process surrogate findings. All 10 scores were correlated with the team performance
score. The analysis was repeated in a replication study. Correlations ranged from -.001
to .95 for the dominance-based aggregates, .01 to .79 for the CRP-based aggregates, -.04
to .75 for the observational process-based aggregate, and .50 to .93 for the simple
arithmetic mean. Most predictors were approximately as good as the baseline measure.
Those that were better predictors than the baseline were the arithmetic mean of
Dominance during various missions (r's from .56 to .95), and the minimum CRP score
during initial missions (r's from .54 to .79). 1)

6.4.3 Conclusions

"* Our communication analysis metrics correspond to team effectiveness supporting
H2.1.

"* LSA-based performance scores correlate with actual team performance (r=.75)
supporting H2. 1.

"* LSA-based performance scores generalize over different semantic spaces and
training sets within the same task domain

"* LSA-based performance scores are robust to errors due to speech recognition
software

"* LSA can be used to consistently predict tags (i.e., content codes).
"* LSA-based tagging generalizes across semantic spaces and training spaces
"* LSA-based density and coherence functions replicate across two of the three

experiments lending partial support to H2.2.
"* Communication stability predicts performance, using CHUMS and ProNet

measures, across studies, supporting H2.2.
"* LSA-based density exhibits higher validity that LSA-based lag coherence
"* LSA vector length is highly correlated with the leaner measure of word count.
"* ProNet results indicate that longer detectable sequences (and hence more regular

communication patterns) are generally linked to better performance and process.

6.5 Task 3: Examine the Team Performance-Communication
Relationship
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6.5.1 Method

This task is related to the second task, but we will be taking a closer look at the nature of
the best-fitting function relating performance to each communication metric, and/or any
combination of individual metrics. Do these patterns make sense in regard to previous
studies and effective or ineffective teams? Taken together, does the set of content and
flow metrics tell a coherent story about the relationship between team performance and
team communication? This task will involve additional regression analyses and
extensive interpretation. Additionally, multiple communications metrics may be
structured as a multivariate fixed variable and used as a conglomerate predictor of
performance. This endeavor serves the very specific purpose of detailing exactly how
much performance variance can be accounted for by taking each of our measures while
minimizing the number of parameters estimated in the model. This endeavor should lead
to more stable performance prediction across samples.

Although, as noted previously many of our communication metrics are new and have not
been applied in previous team research. However, based on some related results in the
team communication literature, we can begin to formulate some hypotheses regarding the
specific relations between communication and team performance. We predict that teams
with higher performance scores will have greater disparity among communication flow
dominance scores because they will tend to have a leader who knows the task (H3. 1). In
addition we predict that high-performing teams will have (according to the flow sequence
analysis) more completed speech cycles (i.e. Person A begins, Person A ends, Person B
begins, person B ends) and fewer interruptions than low-scoring teams (H3.2). We also
expect high-performing teams to have longer mean chain lengths in the sequential flow
analysis than low-performing teams because they understand the task well enough to
have a rehearsed routine (H3.3). In terms of flow stability, we predict that high-
performing teams will have fewer patterns of communication frequency due to their
superior teamwork knowledge and skills (H3.4). We also predict content differences in
the communications of good vs. poor teams. Based on the literature, better teams will
follow assertions or action statements with acknowledgements as based on LSA coding,
more than ineffective teams (H3.5). Further, based on preliminary analysis of data from
a different study, better teams in terms of performance will have communication
efficiency scores that fall within a mid-level range (H3.8). As team skill is acquired we
predict that individual teams will start out as inefficient and then proceed to being overly
"efficient" and finally reach the point of optimal efficiency (H3.7). In terms of LSA-
based coherence, effective teams will demonstrate greater coherence at longer lags,
suggesting decreased topic shifting during missions compared to ineffective teams who
will demonstrate less coherence at longer lags, suggesting a great deal of topic shifting
over a mission (H3.8). Individually, teams should start out with small lag coherence and
at asymptotic levels of performance (mission 4-5) should demonstrate greater lag
coherence (H3.9).
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Table 24
Hypotheses Associated with Task 3

Task/ Hypothesis Supported?
Hypothesis

Number
3.1 Teams with higher performance scores will have greater No

disparity among communication flow dominance scores.

3.2 High-performing teams will have (according to the flow No
sequence analysis) more completed speech cycles and
fewer interruptions than low-scoring teams.

3.3 High-performing teams should have longer mean chain Yes
lengths in the sequential flow analysis than low-
performing teams.

3.4 High-performing teams will have fewer patterns of Yes
communication frequency (in terms of flow stability
metric-CHUMS ) than low performing teams.

3.5 Better teams will follow assertions or action statements Yes
with acknowledgements as based on LSA coding, more
than ineffective teams.

3.6 Better teams in terms of performance will have No
communication efficiency (density) scores that fall within
a mid-level range.

3.7 As team skill is acquired, we predict that individual teams Yes
will start out as inefficient (low density) and then proceed
to being overly "efficient" (high density) and finally reach
the point of optimal efficiency (mid-level density).

3.8 Effective teams will demonstrate greater coherence at Yes
longer lags compared to ineffective teams who will
demonstrate less coherence at longer lags.

3.9 Individually, teams should start out with small lag Yes
coherence and at asymptotic levels of performance, should
demonstrate greater lag coherence.

6.5.2 Results

6.5.2.1 Team Performance Prediction Using Automatically Generated Discourse Tags.
The results LSA-based tagging developed in Task I showed that the methods could
provide accurate characterization of the type of utterances made by team members. In
Task 2 we demonstrated the generality of these methods over different training and
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semantic spaces within the same domain. In order to look at the relationship between
team performance and communication, it is necessary to determine if types and
frequencies of utterances made by team members are indicative of performance. We
computed correlations between the team performance score and tag frequencies in each
team-at-mission transcript in the Experiment 1 corpus.

The tags for all 20,545 utterances in the Experiment 1 corpus were first generated using
the LSA+ method. The tag frequencies for each team-at-mission transcript were then
computed by counting the number of times each individual tag appeared in the transcript
and dividing by the total number of individual tags occurring in the transcript. The results
of the single tag-performance score correlations are shown below (Table 25). We were
able to identify several LSA predicted codes that correlate with team performance.

Table 25
Correlation of single discourse tags to team performance

SINGLE TAG PEARSON CORRELATION SIG. 2-TAILED
Acknowledgement 0.335 0.006
Fact 0.320 0.008
Response -0.321 0.008
Uncertainty -0.460 0.000

Table 25shows that the automated tagging provides useful results that can be interpreted
in terms of team processes. Teams that tend to state more facts and acknowledge other
team members more tend to perform better. Those that express more uncertainty and
need to make more responses to each other tend to perform worse. These results are
consistent with those found in Bowers et al. (1998), but were generated automatically
rather than by the hand-coding done by Bowers.

Using the methodology discussed above, we also computed tag bigrams (adjacent two-tag
sequences) and correlated them with team performance. The significant results are shown
below in Table 26

Table 26
Correlation of discourse tag bigrams to team performance

TWO-TAG SEQUENCES PEARSON CORRELATION SIG. 2-TAILED
Acknowledgement - Fact 0.263 0.031
Fact - Acknowledgement 0.259 0.034
Uncertainty - Response -0.270 0.027
Uncertainty - Uncertainty -0.414 0.000
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Table 26 shows that tag bigrams also provide useful results and insights into team
processes. Most striking is the correlation between teams where an expression of
uncertainty is more frequently followed by another expression of uncertainty with poor
overall team performance. Sequences of factual and acknowledgement seem to contribute
to improved team performance. We hypothesize that the contribution of the uncertainty-
response sequence to poor team performance is directly related to the increased frequency
of single uncertainty statements, rather than the combination of the tags, since we know
increased uncertainty correlates with poor performance and given a statement expressing
uncertainty, it is quite likely that the next statement will be a response.

6.5.2.2 Relationship between the keyword method and performance. The KWI
measures described under Task 1 were examined for correlation with team performance
using data from the earlier Experiment 1. Correlations between mean word length, and
KWI transcript density, as well as weighted words and team performance were found to
be significant as shown in Table 27.

Table 27
Keyword indices and performance correlations

KWIDensity Weighted Vector Words

Performance .209* -.217* -.086 -.297**

N=67,*p<.10, **p<.05

As part of these analyses we also re-fit the LSA transcript density team performance
regression models from Jamie Gorman's MA thesis (Table 28) using the same
Experiment 1 data set. In the thesis, mean vector lengths and mean word lengths were
combined as either a ratio (i.e., density) or a product (i.e., weighted words), and this was
used as a covariate along with team and mission effects to predict performance (Table
29).

Table 28
Regression results from Jamie Gorman 's thesis - Using LSA density to predict team
performance outcome

Performance - LSA Density Relationship
LSA Density LSA Density

Performance t (47) = .477 t (47) = -2.49*
*p <•.0 5
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Table 29
Regression results of using KW1 metrics to predict team performance

Performance - KWI Relationship
KWIDensity Weighted Words

Performance t (48) = 1.62 t (59) = -2.97*
*p<.01

The KWI density score was a marginal predictor of team performance rate (p =.11). As
in the thesis this score related to performance best as a quadratic trend, however this time
as a positive quadratic term. The weighted words score did a good job of predicting team
performance (the linear trend). However these estimates were only significant when the
effects of team membership on performance were left unaccounted for. This might be
indicative that either "team" and KWI weighted words are collinear in terms of
performance, or "team" moderates the relationship between KWI weighted words and
team performance (i.e., "team" is a good predictor of performance with KWI in the
model). The former might be tentatively more appealing since these analyses were
correlational in nature. In any case we were encouraged with these results indicating that
KWI content analysis may play some role in explaining UAV STE team performance.

6.5.2.3 Relationship among transcript density, lag coherence, and team performance.
In order to estimate the relationship between team performance and team communication
operationalized as transcript density and lag coherence, linear regression was used.
Specifically, each of the two communication measures was used as an independent
variable to predict team performance at each mission. Table 30 gives the results of these
analyses.

Table 30
Performance - Communication Relationships: Transcript Density and Lag Coherence

Performance -- Density/Lag Coher Relationship

DV Experiment 3
Density Lag Coher

Performance t (82) = 1.977" t (82) = -.074
Experiment 4

SDensity Lag Coher

Performance t (58) = .510 t (83) = -3.390**

Note. *p <.10; **p <.01

Across Experiments 3 and 4, higher density predicted higher team performance, contrary
to H3.6, although this finding only reached significance in Experiment 3. Ostensibly this
means that more "UAV-talk" relative to total talk is associated with higher levels of team
performance, however there may be difficulties with this interpretation given the
relationship between word counts and the LSA vector lengths that comprise this measure;
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specifically that density is the ratio of two word count measures that were measured on
different scales (please refer to Task 2 for more information).

The effect of Mission on transcript density was tested in order to address H3.7. For
Experiment 3, the (linear) effect of Mission on transcript density was significant (F (6,78)
= 1.831, p =. 104). For Experiment 4, the (linear) effect was also significant (F (4,55) =
2.881, p < .05). Figure 6 depicts the mean results over missions. As predicted, transcript
density started low, increased dramatically, and there is some evidence (i.e., Missions 4-6
for Experiment 3, Mission 5 for Experiment 4) that teams returned toward a more
moderate level of transcript density after an initial, dramatic increase. However, it should
be noted that changes subsequent to Mission 4 are confounded with increased workload
(Task 4).
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o 0.0570.057- 
Experiment 3

......6 Experiment 4to-0.056-
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Figure 6. Mean transcript density as a function of mission in Experiments 3 and 4.

For lag coherence, the performance relationship was also consistent across Experiments 3
and 4, although this finding only reached significance in Experiment 4. (Please note that
this is inconsistent with the findings from Task 2. In general usage there would be no
reason to assume these relationships are polynomial.) Specifically, the negative
relationship suggests that as lag coherence becomes increasingly negatively sloped, team
performance improves. In laymen's terms, as conversations become related over time,
we observe increases in team performance, supporting H3.8.

The effect of Mission on lag coherence was tested in order to address H3.9. For
Experiment 3, this effect was not significant (F (6,78) = .722). For Experiment 4, the
relationship was significant (F (4, 80) = 1.988, p = .104). Figure 7 shows the mean level
of lag coherence across missions for Experiments 3 and 4. It appears that the
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developmental trend predicted in H3.9 was exhibited in the low workload missions (1-4),
but was interrupted by the high workload manipulation (Mission 5).
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Figure 7. Mean lag coherence as a function of mission in Experiments 3 and 4.

For both Experiments 3 and 4, the fact that one but not the other of these two content
metrics was significantly related to team performance is interesting. It can be speculated
that this may be due in part to the longer duration of high workload in Experiment 3
versus Experiment 4. In particular, the number of high workload observations could
impact the team performance - communication relationships because team performance
decreased under high workload. Paradoxically then, if there are significant workload
effects of these metrics (please refer to Task 5) then we should expect an attenuation of
the team performance - communication relationship for Experiment 4, given the
relatively small number of high workload observations.

6.5.2.4 FAUCETMetrics. CHUMS findings. Team performance effects were
detectable by CHUMS model counts in mission-by-mission tests for both Experiments 3
and 4 at performance asymptote Mission 4 (Exp. 3: F (1,14) = 5.81, ft = -.541,p = .03, R2

= .293; Exp. 4: ft = -.422,p = .09, R2 = .178). In Experiment 4 a similar effect was found
at Mission 3 (Exp. 3: F (1, 15) = 4.830, fl = -.494, p = .04, R2 = .244). For team process
behaviors at critical events (e.g., communicating the correct information in the correct
order) omnibus (i.e., over Experiments 3 & 4) negative correlations were found between
model counts and team process, with Missions 3 (r = -.46) and 4 (r = -.44) being the
highest. CHUMS model counts is one of our communication consistency measures.
Hence, this finding indicates that teams with more consistent communication, also tend to
have better team process supporting H3.4.
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Procedural networks (ProNet). Analyses of communication flow sequence using ProNet
detection has revealed that some specific speech sequences are predictive of performance.
For instance, ProNet detection of PLO-DEMPC cycles (the Pbegin-Pend-Dbegin-Dend
sequence of speech events) were found to negatively predict performance at an omnibus
level for Experiment 3 (F (1, 94) = 3.692, p = .058, Mabsent = 469.44, Mprese,,t = 442.45).
This effect was smaller, but in the required direction for Experiment 4 (F (1, 64) = 2.197,
p= .143, Mabsent = 544.10, Mpresent = 523.22). This implies that complete speech
sequences beginning with PLO and ending with DEMPC are predictive of poor
performance. This contradicts H3.2. Since these were the only complete cycle and/or
interruption results that were found, we conclude that H3.2 was not supported.

Other predictive results for the ProNet measures indicate that longer detectable sequences
(and hence more regular communication patterns) are generally linked to better
performance and process (supporting H3.4).

Flow patterns andglitch adaptations. During the mission in which the glitch was
introduced, teams exhibited communication behaviors consistent with adaptation. Most
notable were the ProNet measures. The DEMPC-to-AVO channel cut was associated
with more DEMPC-to-PLO complete utterance cycles, more PLO-to-AVO utterance
cycles, and fewer DEMPC-to-AVO cycles. Other communication findings were also
consistent with adaptation, such as an increase in total communication patterns (CHUMS
measures), PLO communication quantities deviating from the pre-determined norms
(CRP measures), and a shift in the Dominance measures toward DEMPC dominance.

Dominance, CRP, andprocess surrogate. No outstanding findings were made for
Dominance, CRP, or Process Surrogate. The few findings that were revealed, tended to
be at a mission-by-mission basis, and were not replicated across studies. Hypothesis 3.1
was that the dominance measure should be predictive of performance. Since it was not,
H3.1 is rejected.

The process surrogate measure was rejected from further analysis, because it is
conceptually too similar to the dominance and CRP measures.

6.5.2.5 Combined methods. One approach to combining the methods was to incorporate
all of them, or a representative from each method, into a single regression equation. This
way, the variance shared among the predictors can be removed, and we can assess their
unique contribution to performance. For the third study, the following model resulted
from a procedure that was based partly on automatic variable selection, and partly on an
attempt to maximize diversity in represented predictors. No suppressor variables were
required. The result is displayed Table 31.
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Table 31
Regression results from combined FA UCETpredictors

2R = .24, F(3, 90) = 9.468,p < .001.

Process Surrogate:
The Arithmetic mean of Dominance weighted individual performance (AritD)
B = 991.346, ,6= .224, t(90) = 3.981,p < .001

CRP:
The extent to which AVO did not receive excess passed communication (Achat)
B = -1351.033,/3= -.160, t(90) = -2.346,p = .021

ProNet:
Maximum chain length among the set of identified chains (Max)
B = -5.189,/3= -.101, t(90) = -2.638,p = .010.

We interpret this model as bearing the following implications:

+AritD->Communication dominance of team members predicts their impact on team
performance

-Achat--)the AVO should speak and/or be spoken to more, rather than less
-Max-> Chains should not be too long or in other words, speech acts should not be too
scripted

The last finding is particularly interesting, because the ProNet findings, when taken by
themselves, generally suggest that more regularly scripted communication patterns are
associated with better team performance and process.

Another combined approach is through Hidden Markov Models. Our Hidden Markov
models (HMM) assumed that the flow of discourse content among team members could
be modeled using first order Markov transitions, and that this process emits codes from a
discrete tagging alphabet. Briefly, HMM's consist of a set of parameters, a state space,
and an alphabet. Our parameterization includes the conditional probabilities of each
speaker following another (transition matrix A), an initial speaker probability vector (i),
and the conditional probabilities of each code being observed while the process is in each
of the states (emission matrix B). /The state space was constructed by interconnecting all
content-emitting sources of a team (see Figure 8). The hidden Markov process was also
assumed to be ergodic and stationary. The alphabet of possible signals emitted from this
process were U-uncertainty, F-fact, A-acknowledgement, AN-take action, R-response,
NT-off task, P-planning, EXP-intelligence, and C-compound, where C is some
combination of the other 8 codes.
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Figure 8. State space diagram with transitions (the A's) for a CERTT team's Markov
model.

In order to obtain maximum likelihood (ML) estimates for model parameters, we used the
iterative Baum-Welch procedure. Essentially this procedure maximizes the probability of
an observed training sequence by iteratively adjusting the models parameters. Baum-
Welch however, only guarantees local ML estimates, a significant problem with larger
parameter spaces. Thus we also incorporated a "hill-climbing" strategy in which we
varied the starting values of the parameters, and iterated until we converged on a set of
estimates. Additionally, we started with observed emission probabilities in order to
initiate the algorithm in the right directions. In Figure 9, likelihood over iterations is
illustrated for three sets of starting parameter values for Experiment 1 Team 2 (5670
coded utterances). Set # 3 is the actual observed transitions among speakers in the data
set (included for comparison), while sets 1 and 2 start with A values for equal-probable
transitions among the team member content sources (.45 and .33 respectively) and near
zero transitions for team members following themselves (.01). In both sets 1 and 2 team
members following Intelligence (i.e., the experimenter) were equal-probable (.10 and .33
respectively) as is Intelligence following any team member (.10 and .33 respectively).
Across the starting sets, ML estimates are obtained within a few iterations (7). The
estimates across the hypothetical starting configurations are not in complete agreement
(in many cases only to the first or second decimal place), therefore the final estimates for
elements of A and i were averages across solutions (Note that B always starts the same
and agreement across starting configurations is much higher). Examples of estimates are
given in the table below Figure 9.
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Figure 9. Likelihood of training sequence over Baum-Welch iterations.

A=
AVO PLO DEM INT

AVO 0.0220282 0.6069003 0.3707547 0.0003168
PLO 0.6829903 0.0160469 0.3002417 0.0007212
DEM 0.5706259 0.4170825 0.0106203 0.0016713
INT 0.0078401 0.0051787 0.0265421 0.9604439

B=
A AN C EXP F NT P R U

AVO 0.2487994 0.0005501 0.4281435 0.0161844 0.2530311 3.347E-15 5.871E-16 0.0000345 0.0532572
PLO 0.2490362 0.0016990 0.3540993 0.0259375 0.2866269 0 0 0.0000438 0.0825573
DEM 0.1888008 0.0018488 0.4392849 0.0365911 0.3021784 7.719E-16 1.015E-15 0.0000828 0.0312131
INT 0.0173992 0.0000638 0.0692706 0.7979959 0.1056288 1.461E-14 0 0.0000117 0.0096300

i=
AVO PLO DEM INT

0.2416041 0.398213 0.3458598 0.0143231

The relationship between a teams' Markov model and its' performance is not clear, nor
have extensive efforts yet been invested in addressing this relationship. However one
initial effort, in which "high outcome performance" parameter estimates were compared
to individual team estimates have indicated that DEMPC - PLO sequences are more
likely in the high performance estimates than in a nominal mission transcript. Also the
high performance transcript estimates reveal lots of use of acknowledgments, uncertainty,
and factual type statements. Further, in poorer performance transcripts we found a high
probability for response and uncertainty, but low probability for acknowledgements.
These latter analyses have indicated that a good team's uncertainties are followed more
often by facts. A poorer team's uncertainties are less likely to be followed by a fact.
These results corroborate and further delineate the automatic tagging results described
previously in this section.
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6.5.3 Conclusions
"* Teams that tend to state more facts and acknowledge other team members more

tend to perform better. Markov analyses also supports this claim.
"* Those that express more uncertainty and need to make more responses to each

other tend to perform worse. Markov analyses also supports this claim.
"* We were encouraged with these results indicating that KWI content analysis may

play some role in explaining UAV-STE team performance
"* Higher density (i.e., more "UAV talk") predicted higher team performance
"* As predicted, transcript density started low, increased dramatically, and there is

some evidence (i.e., Missions 4-6 for Experiment 3, Mission 5 for Experiment 4)
that teams returned toward a more moderate level of transcript density after an
initial, dramatic increase.

* As conversations become related over time, we observe increases in team
performance

"* In the low workload missions teams tend to start out with small lag coherence and
at asymptotic levels of performance demonstrate greater lag coherence.

"* Teams with more consistent communication, also tend to have better team process
"* More regular communication patterns are generally linked to better performance

and process
"* Adapting to a cut communication channel by creating more communication

patterns was beneficial for relative performance
"* FAUCET methods predict team performance better than simple, low level

communication quantity methods.

6.6 Task 4: Investigate Co-located (F2F) vs. Distributed
Collaboration

6.6.1 Method

In both Experiments 3 and 4 teams were assigned to either co-located or distributed
environments in which they stayed for the 7 or 5 missions, depending on the experiment.
Under this task we explore the impact of this environmental factor on communication
patterns. The comparison of the increasingly common distributed environment to the
face-to-face condition provides a baseline against which to assess the impact of
geographic separation. The communication metrics are each examined individually and
jointly, for differences due to this manipulation. In cases in which differences exist, the
nature of those differences is explored. In addition, within a condition, the relationship
between performance and communication is examined. It is possible that communication
is more critical for performance in environments that are not face-to-face. In addition,
patterns of communication are examined in each condition over time to identify any
evidence of adaptation via communication behavior. Specifically, analyses include uni-
and multivariate inferential statistical testing, depending on the hypothesis being
considered.
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Numerous possible hypotheses can be tested in this context. For example, it is possible
that communication is more critical for performance in environments that are not face-to-
face than those that are and so performance-communication relationships identified under
Task 3 should be strongest in the former condition (H4. 1). It is also possible that
distributed teams will spend more time discussing teamwork and non-task related topics
than co-located teams, because they will feel the need to become acquainted with one
another (Walther, 1996). This should become apparent in differences in LSA-based code
frequencies for co-located vs. distributed conditions (H4.2). Because teams in distributed
conditions should gradually acquire the missing teamwork and interpersonal information,
the differences found due to mission environment should dissipate with experience
(H4.3).

Table 32
Hypotheses Associated with Task 4

Task/Hypothesis Hypothesis Supported?
Number

4.1 Performance-communication relationships No
identified under Task 3 should be stronger in the
distributed condition than the co-located
condition.

4.2 We expect LSA-based coding to reflect more Yes
teamwork and non-task related communications
among distributed teams than co-located teams.

4.3 The communication differences found in 4.2 Yes
should dissipate with experience.

6.6.2 Results

6.6.2.1 Using LSA to predict whether teams were co-located or distributed. The goal of
using LSA in investigating F2F vs. distributed collaboration was to try to model
differences between the F2F and distributed groups in order to determine whether there
were measurable differences in language between the groups. We were not able to find
significant differences using whole-transcript discourse to predict whether teams were co-
located or distributed using LSA.

6.6.2.2 Co-located vs. distributed transcript density and lag coherence. The LSA-based
density and lag coherence measures were analyzed for effects of the co-located vs.
distributed manipulation in Experiments 3 and 4. Table 33 lists the number of
observations, means, and standard deviations of each score for each experiment.
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Table 33
Descriptive Statistics for Transcript Density (a) and Lag Coherence (b) as a Function of
Co-located and Distributed Collaboration for Experiments 3 and 4

Co-located Distributed
Density Density

(a)
Exp 3 Exp 4 Exp 3 Exp 4

N 34 29 51 31

Mean 0.057 0.058 0.058 0.056

SD 0.006 0.004 0.004 0.007

Co-located Distributed
Lag Coher Lag Coher

(b)
_Exp Expp3 Exp4 xp3 Exp 4

N 34 44 51 41
Mean -0.167 -0.158 -0.187 -0.133
SD 0.046 0.046 0.075 0.041

One-way ANOVAS were tun with the two-level team distribution as the factor variable
and communication metric as a dependent variable. These results are given in Table 34.
These results indicated non-significant effects for Experiment 3, but marginal (density)
and significant (lag coherence) effects for Experiment 4. In this experiment, co-located
teams exhibited greater transcript density and larger lag coherence slopes (although not
statistically detectable, it is interesting to note that the opposite pattern occurred in
Experiment 3).
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Table 34
F-statistics for Team Distribution ANOVAs for Transcript Density and Lag Coherence
for Experiments 3 and 4

Factor Experiment 3
Density Lag Coher

Distribution F (1,83)= .073 F (1,83) = 1.937
Experiment 4

Density Lag Coher

DistributionF (1,58) = 2.617* F (1,83) = 6.625**
Note. *p<. 15 ; **p<.05

A 2 (distribution condition) X 2 (level of workload) ANCOVA with team performance as
the dependent variable and communication measure as the covariate was run in order to
investigate H4.1. (Workload was used to control for a significant source of variance.
Refer to task 4.) For Experiment 3, the interaction between density and distribution
condition and lag coherence and distribution condition were both non-significant (F (1,
79) = .025 and F (1,79) = .001, respectively). Therefore for density and lag coherence
measures in Experiment 3 there was no support for H4.1 that the communication -
performance relationship would be greater for the distributed condition.

6.6.2.3 Co-located vs. distributed flow effects. CHUMS findings. Distributed teams had
more CHUMS models than co-located teams for Missions 2, 4, and 5 (respectively t(89)
= 2.08,p = .04; t(89) = 3.00,p = .003; t(89) = 2.95,p = .004). The number of models
increased from Mission 5 to 6 (t(89) = 2 .03, p = .045), particularly for co-located teams.
This means three things. First, it means that distributed teams had less stable
communication patterns than did co-located teams. Second, it means that, at the
communication glitch (breakdown in communication between AVO and DEMPC in one
direction in Mission 6), all teams exhibit an increase in communication patterns, and
hence a decrease in stability. This is presumably due to adaptation to the glitch. Third,
since co-located teams had a larger increase in CHUMS models than did distributed
teams, and since distributed teams had more models to begin with, these findings show
that, at the glitch, all teams behave more like distributed teams. This claim is supported
by other findings as well. Co-location's impact on model counts drops and reverses
between Missions 5 and the glitch mission (6) (Q(89) = -2.61, p = .011), and the reversal
becomes more extreme from 6 to 7 (t(89) = -2.62, p = .010). Overall, distributed teams
tried more communication strategies than did co-located teams, though co-located teams
also used more strategies at the glitch. Geographic distribution and a glitch seem to be
associated with more patterns which may be attributed to team adaptation.

Dominance findings. In terms of Dominance, AVO is reactive in Co-located teams, but
dominant in distributed teams (F(l, 16.78) = 16.41, p = .001). DEMPC is moderately
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dominant for Co-located, but reactive for Distributed, F(1, 16.51) = 12.84, p = .002.
During the Glitch Mission (6), Co-located teams become AVO-dominant (t(89) = -2.08, p
= .040), and PLO-reactive (t(89) = -1.88,p = .063). Averaging across both conditions,
DEMPC is dominant in the Glitch Mission (6) (t(89) = 2.05, p = .043), but reactive in all
other missions. As with CHUMS findings, we see here that all teams behave more like
distributed teams, during the glitch.

ProNetfindings. ProNet patterns in Experiment 3 revealed a fairly straightforward
picture. In Co-located teams (but not in Distributed teams) DEMPCs interrupt AVOs,
and AVOs repeat themselves. Also, DEMPCs pass information to PLOs, and PLOs pass
information to AVOs. In terms of two types of interruption, AiD and PiA, the impact of
co-location decreases over time, after teams have reached performance asymptote,
supporting H4.3.

For Experiment 4, ProNet findings revealed that co-located teams had more open
communication channels than distributed teams. As with Experiment 3, most
communication patterns were more common for co-located than for distributed teams,
presumably because co-located teams spent more time talking than distributed teams.
However, distributed teams had more APcycles than Co-Located teams. This suggests
that AVO and PLO talked to one another more in distributed teams, presumably because
DEMPC was more remote.

Turning to glitch effects for ProNet, between Missions 5 and 6, DAcycles decrease
(Wald(1) = 3.15, p = .076), DPcycles increase (t(89) = 1.82, p = .073), and PAcycles
increase (t(89) = 2.1l,p = .038). Also, PDcycles decrease (Wald(l) = 3.30,p = .069).
These behaviors simply validate that teams did, in fact, tend to adjust their
communication patterns during the glitch mission. Since DEMPC was unable talk to
AVO, teams developed additional patterns, in which DEMPC-to-AVO communication
decreases, but DEMPC-to-PLO communication increases, as does PLO-to-AVO. Given
that we cut the communication channel, these findings are not particularly surprising in
and of themselves. It simply means that teams did in fact adapt. More importantly, it
means that we were able to detect and diagnose this adaptation, with our communication
measures.

CRPfindings. Distributed teams tended to have higher PLO CRP values, indicating that
distributed PLO's tended to speak in more norm-appropriate ratios than did co-located
PLO's. This may be due to AVO and DEMPC talking too much in co-located teams.
However, this Distributed communication advantage decreases with task experience.

Hypothesis 4.1 was that the performance-communication relationships identified under
Task 3 would be stronger in the distributed condition, than the co-located condition. This
hypothesis was not supported. Findings for the distributed condition did not match the
general performance-FAUCET relationship. For example, the CHUMS finding for
performance was that high performing teams have fewer models. However, the co-
location finding was that distributed teams had more CHUMS models than did co-located
teams, and yet they performed about as well.
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In summary, though distributed teams spent less total time speaking, they tended to use
more words per second (see the next section). This means that they speak more quickly,
and/or use shorter words. CHUMS measures showed that distributed teams have more
models, and hence have more distinct communication patterns, than do co-located teams.
This reveals that their communication pattern is less stable than for co-located teams.
Taken together, these findings suggest that, compared to co-located teams, distributed
teams speak less, but get to the point more quickly. They do not develop strong
formalisms for communication style. Hence, though they use more words, it is likely that
the words they use are more function-oriented. This can be interpreted as a more terse
communication style.

6.6.2.4 Differences in amount of talking and keywords. Additional methods were
developed and tested to use basic textual features to predict whether teams were co-
located or distributed based on their discourse. Aspects of this novel methodology might
be useful in other team situations in terms of characterizing language differences among
teams.

For example, Table 35 shows the results of correlating the total number of words in a
team-at-mission transcript with the length of the transcript in time. There was a
significant difference in the correlations(r difference p<.05). This suggests that the
discourse for distributed teams may be more uniformly distributed during the mission.
Other results under this task confirm this hypothesis. Both of these correlations are
significantly different from 0 (p<.01).

Table 35
Correlation of Number of Words with Transcript Time

Team Type Correlation
All 0.362
Co-located 0.285
Distributed 0.530

The hypothesis that distributed teams will speak more (H4.2), since all communication
must be spoken is supported by our findings in Table 36 showing that distributed team
average significantly more words per second than co-located teams (t (168)=5.06, p<.O1).
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Table 36
Average Words Per Second

Team Type Average Words Per Second
Co-located 0.869
Distributed 1.069

In what we believe is a useful approach to detecting team differences based on dialogue,
we investigated the ratios of the frequencies of common words and phrases for co-located
and distributed teams. We computed these for words (unigrams), two word sequences
(bigrams) and three word sequences (trigrams). This procedure is similar to that of the
KWI analysis.

Our algorithm computes the most frequent words (bigrams, trigram respectively) for each
co-located (respectively distributed) team-at-mission transcript. The 200 most frequent
words from all co-located (respectively distributed) teams is compiled and frequency of
occurrences of the word over all co-located (respectively distributed) transcripts is
computed. We then compute the ratio of the frequencies of the co-located team's words
(respectively bigram, trigrams) to the frequencies of those for the distributed teams and
vice versa. The results, sorted by ratio, are shown in the three tables below (Tables 37,
38, and 39). While we believe this is a useful approach, we have not been able to reach
any definite conclusions from our analyses of this data. Our working hypothesis that the
discourse for distributed teams would be more focused and "on-task" the results below
neither confirm nor rule out the hypothesis.

Table 37
Ratios of Most Frequent Unigrams

Di- Co- Ratio Co- Di- Ratio
Word Freg Freg (Di/Co) Word Freg Freg (Co/Di)

6.3789930
lej 116 32 83 gonna 549 2 155.9905

5.8070833
required 66 20 58 de 131 2 37.22178

5.7190972
stats 39 12 47 advise 119 2 33.81215

5.6496345
holding 61 19 27 dem 58 1 32.95975

5.6311111
regulations 32 10 35 wlf 83 2 23.58327

5.3610142
steady 131 43 35 gotta 36 1 20.45777

5.2791666
ork 78 26 89 inform 95 3 17.99526
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5.1438034
mountain 38 13 41 mar 63 2 17.90055

4.6192708
consensus 21 8 53 x 27 1 15.34333

4.5878472
cued 73 28 42 elapsed 24 1 13.63852

4.2736111
who 17 7 29 noted 24 1 13.63852

4.1060185
immediately 21 9 36 y 24 1 13.63852

4.0793560
ste 51 22 78 photographed 60 3 11.36543

3.9593750
actual 18 8 17 rain 19 1 10.79716

3.8817402
red 75 34 13 tke 74 4 10.51302

3.8198848
her 89 41 4 check 526 129 10.30727

3.5194444
she's 8 4 59 present 18 1 10.22889

3.5194444
mst 16 8 59 intercom 16 1 9.092344

3.5194444
weird 10 5 59 op 16 1 9.092344

3.5194444
target's 26 13 59 overshot 15 1 8.524073

3.3309027 recommendatio
picture's 53 28 92 ns 15 1 8.524073

3.2994791
sec 15 8 81 sit 14 1 7.955801

3.2994791
mkl 60 32 81 pilot 54 4 7.671665

3.2848148
hundred 28 15 29 calling 39 3 7.38753

3.2680555
jump 13 7 69 photographing 13 1 7.38753

3.2680555
side 13 7 69 stopped 13 1 7.38753

3.1675000
bunch 9 5 13 primary 26 2 7.38753

3.1675000
confused 9 5 13 reading 25 2 7.103394

3.1675000
kidding 9 5 13 ssrt 12 1 6.819258

3.1528356
man 43 24 62 cancel 11 1 6.250987

3.1283950
non 16 9 75 flaps 11 1 6.250987

3.0795139
exiting 7 4 02 whether 11 1 6.250987

3.0795139
here's 7 4 02 wp 11 1 6.250987

3.0795139
safe 14 8 02 excellent 55 5 6.250987
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3.0795139
without 14 8 02 communicate 21 2 5.966851

3.0795139
zero 14 8 02 communication 21 2 5.966851

3.0770000
sen 306 175 13 maintained 21 2 5.966851

3.0646847
[garbled] 310 178 82 affective 315 30 5.966851

3.0166666
one's 12 7 8 bypass 10 1 5.682715

2.9328703
forgot 15 9 83 intel 10 1 5.682715
joh 15 0 0 adjustment 14 0 0
shit 15 0 0 dave 14 0 0
buddy 16 0 0 experimentor 14 0 0
cah 16 0 0 queued 15 0 0
cert 16 0 0 terrain 15 0 0
fart 17 0 0 effect 17 0 0
haul 17 0 0 duke 18 0 0
intended 17 0 0 ban 19 0 0
sitting 17 0 0 letters 19 0 0
reg 18 0 0 fstr 22 0 0
regs 18 0 0 expected 23 0 0
narrow 21 0 0 cooter 24 0 0
romeo 21 0 0 bay 30 0 0
that'd 22 0 0 fste 33 0 0
dash 23 0 0 coordinate 36 0 0
include 23 0 0 q 36 0 0
mark 23 0 0 standing 36 0 0
bump 27 0 0 barea 44 0 0
gre 27 0 0 kob 45 0 0
photographab
le 34 0 0 successfully 46 0 0
umm 34 0 0 luv 48 0 0
regulation 39 0 0 van 53 0 0
thousand 45 0 0 successful 61 0 0
re-enter 48 0 0 sur 83 0 0
proposed 49 0 0 agt 88 0 0
storm 49 0 0 san 91 0 0
letting 51 0 0 nha 106 0 0
er 52 0 0 crew 115 0 0
smi 55 0 0 harea 415 0. 0
dmpc 82 0 0 farea 478 0 0
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Table 38
Ratios of Most Frequent Bigrams

Di- CoFre Ratio Co- Di- Ratio
Word Freg q (Di/Co) Word Freg Freg (Co/Di)

37.540965 72.405355
that shot 27 1 91 gonna be 101 1 31

27.808122 68.820931
accepted proceed 20 1 9 please advise 96 1 78

26.417716 50.540371
proceed roger 19 1 75 dempc to 141 2 78
special 26.417716 38.711774
requirements 19 1 75 clear picture 54 1 13

20.856092 36.130989
a mountain 15 1 17 check on 252 5 19

20.856092 32.259811
straight and 30 2 17 okay thank 45 1 77

20.160889 31.542927
photo let's 29 2 1 clear to 44 1 07

19.465686 30.109157
altitude be 14 1 03 the cue 42 1 65

19.465686 30.109157
for red 14 1 03 will proceed 42 1 65

19.465686 29.392272
okay [null] 14 1 03 plan on 41 1 95

19.465686 28.675388
your intended 14 1 03 have good 40 1 24

18.075279 acceptable 27.241618
for ork 13 1 88 picture 38 1 83

18.075279 27.241618
getsen 13 1 88 speed min 38 1 83

18.075279 25.807849
pictures uh 13 1 88 entry site 36 1 42

18.075279 25.090964
regulation is 13 1 88 of 5.0 35 1 71

18.075279 22.940310
we're sitting 13 1 88 and switch 32 1 59

17.380076 21.506541
will your 25 2 81 over all 30 1 18

16.684873 20.789656
only an 12 1 74 to wlf 29 1 48

16.684873 20.550694
picture's going 12 1 74 right roger 86 3 91

15.989670 20.072771
exit at 23 2 67 i'm back 28 1 77

15.294467 20.072771
2i 11 1 59 picture looks 28 1 77

15.294467 20.072771
above uh 11 1 59 to sel 28 1 77

15.294467 19.355887
cause i'm 11 1 59 of at 27 1 06

15.294467 19.355887
regulations on 11 1 59 ok thank 27 1 06
guys after 22 2 15.294467 roger we 53 2 18.997444
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59 71
14.599264 18.639002

restrictions only 21 2 52 move to 26 1 36
13.904061 18.639002

altitude regulation 10 1 45 200 knots 156 6 36
13.904061

changed course 10 1 45 my radius 51 2 18.28056
13.904061 be 17.922117

did say 10 1 45 photographed 25 1 65
13.904061 17.922117

give them 10 1 45 the coordinates 25 1 65
13.904061 17.384454

heading after 10 1 45 a clear 97 4 12
13.904061 17.205232

in it 10 1 45 a total 24 1 95
13.904061 17.205232

mste um 10 1 45 dempc be 24 1 95
13.904061 17.205232

requirements just 10 1 45 for photo 24 1 95
13.904061 17.205232

speed holding 10 1 45 total of 24 1 95
13.904061 16.488348

uh sstr 10 1 45 knots roger 23 1 24
13.904061 16.488348

uh 3000 20 2 45 me what's 23 1 24
13.556459 16.488348

holding steady 39 4 91 remaining and 23 1 24
13.208858 16.488348

a storm 19 2 38 target sstr 23 1 24
13.208858 16.129905

photo target 19 2 38 dempc roger 45 2 89
charlie romeo 15 0 0 advised that 39 0 0

successful
dmpcdo 15 0 0 picture 41 0 0
speed 100-200 15 0 0 after farea 43 0 0
we re-enter 15 0 0 are clear 43 0 0
3,000 okay 16 0 0 10-4 avo 45 0 0
include speed 16 0 0 am gonna 46 0 0
regulation of 16 0 0 crew plo 46 0 0
now changed 17, 0 0 miles over 47 0 0
shot off 17 0 0 de please 53 0 0
the er 17 0 0 for harea 57 0 0
your proposed 17 0 0 change over 59 0 0
and narrow 21 0 0 to way 59 0 0
to re-enter 21 0 0 uh de 65 0 0
3,000 feet 22 0 0 cue in 71 0 0
photographable
target 24 0 0 gonna go 84 0 0
camera target 26 0 0 to farea 92 0 0
dmpc this 26 0 0 to harea 97 0 0
proposed air 34 0 0 for farea 100 0 0
re-enter at 35 0 0 we're gonna 115 0 0
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above 3,000 40 0 0 o I i'm gonna- 1511 0 0 O

Table 39
Ratios of Most Frequent Trigrams

"Top 50 3-gram for Collocated Top 50 3-gram for Distributed
ngram Co Dist Ratio ngram Dist Co Ratio
is 5 0 231 9 25.66667 just letting you 43 4 10.75
to avo i 90 4 22.5 this is uh 27 3 9
copy that plo 65 3 21.66667 uh no restrictions 26 3 8.666667
okay i am 62 3 20.66667 going to exit 34 4 8.5
its effective" radius 80 4 20 need you at 41 5 8.2
the picture plo 55 3 18.33333 and we do 23 3 7.666667
of 5 0 128 7 18.28571 letting you know 43 6 7.166667
effective radius will 48 3 16 good for the 28 4 7
5 0 roger 42 3 14 onto next target 28 4 7
miles copy that 38 3 12.66667 must be above 20 3 6.666667
next picture will 38 3 12.66667 is a negative 19 3 6.333333
radius will be 63 5 12.6 next target uh 19 3 6.333333
5 0 and 37 3 12.33333 uh dempc this 24 4 6
and max of 36 3 12 dempc no restrictions 23 4 5.75
next target area 48 4 12 what will be 57 10 5.7
on that okay 48 4 12 uh effective radius 34 6 5.666667
plo we have 84 7 12 the maximum is 28 5 5.6
have a minimum 47 4 11.75 no speed or 22 4 5.5
yes that s 35 3 11.66667 uh speed rules 22 4 5.5
ahead and cue 45 4 11.25 guys we got 16 3 5.333333
is dempc i 90 8 11.25 point it s 16 3 5.333333
affirmative thank you 33 3 11 that we got 37 7 5.285714
five mile radius 54 5 10.8 uh what do 21 4 5.25
5 it is 32 3 10.66667 1000 to 3000 15 3 5
also a target 32 3 10.66667 5 0 speed 15 3 5
affective radius is 128 12 10.66667 a exit point 15 3 5
you tell me 128 12 10.66667 picture s taken 15 3 5
to 400 knots 42 4 10.5 we 11 hit 15 3 5
of 2 50 31 3 10.33333 re out of 25 5 5
within five miles 31 3 10.33333 f area avo 24 5 4.8
that go ahead 41 4 10.25 i ll need 19 4 4.75
next target roger 30 3 10 0 and we 14 3 4.666667
next point after 108 11 9.818182 ready to move 14 3 4.666667
is dempc you 49 5 9.8 site is going 14 3 4.666667
are my restrictions 29 3 9.666667 uh dempc what 28 6 4.666667
can you tell 116 12 9.666667 what would be 18 4 4.5
plo how many 48 5 9.6 3000 effective radius 13 3 4.333333
will be a 48 5 9.6 uh f area 13 3 4.333333
five miles the 28 3 9.333333 you must be 30 7 4.285714
have we taken 28 3 9.33333.3 avo are there 51 12 4.25
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i m sending 28 3 9.333333 100 and 200 21 5 4.2
the picture let 28 3 9.333333 5 that s 21 5 4.2
avo dempc this 37 4 9.25 need you below 21 5 4.2
avo i got 37 4 9.25 this is the 126 31 4.064516
3 75 miles 27 3 9 give me one 12 3 4
a photograph of 27 3 9 have any flight 12 3 4
five miles for 27 3 9 is taken and 12 3 4
roger avo this 27 3 9 must be under 12 3 4
sen 2 roger 27 3 9 you are correct 12 3 4
speed 300 maximum 27 3 9 you need is 12 3 4

6.6.3 Conclusions

* Co-located teams exhibited greater transcript density (content efficiency) and
larger lag coherence slopes (stability) though these results did not replicate across
experiments

* Distributed teams are more variable (i.e., more CHUMS and ProNet patterns)
than co-located

* At the communication glitch, all teams tend to behave as if distributed indicating
that increased patterns may be a form of team adaptation

* ProNet methods detect team's adaptation to the communication channel glitch.
As expected, teams reroute communication to avoid the cut channel.

* Co-located teams had more open communication channels than distributed
* Distributed PLO's tended to speak only as much as they needed to, while co-

located PLO's tended to speak more frequently than needed.
• The hypothesis that distributed teams will speak more (i.e., more words per

minute), since all communication must be spoken is supported
* Discourse for distributed teams may be more uniformly distributed during the

mission.
* Compared to co-located teams, distributed teams take spend less time speaking

though use more words when they do, have more distinct, but less stable
communication patterns. Distributed teams are terse, but with no strong
formalisms.

We again note that consistency is key as performance develops, but less so for distributed
teams, as they seem to have a proclivity for more and varied patterns. While tentative,
these results empirically support what has often been inferred by studies in the team
cognition literature, that expectancies and thus consistencies develop over time and are
the hallmark of highly skilled teams. Interestingly, distributed teams, as opposed to co-
located teams, are less consistent in terms of communication patterns, suggesting that the
distributed environment (as well as the glitch) increases adaptation behavior on the part
of the team. Our flow analysis methods have also demonstrated their utility for
uncovering communication glitches (i.e., a breakdown in communication equipment).
These can be indexed either by a sudden change in pattern, or in who is atypically leading
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the flow of conversation. Important for this grant's work, this indexes differentially
based on whether the team is co-located or distributed.

6.7 Task 5: Examine Impact of Workload on Communication and
Performance

6.7.1 Method

In both experiments, workload was manipulated within teams. In Experiment 3, the last
3 missions of seven were high workload and in Experiment 4, the last mission of five was
high workload. It is not clear how this workload manipulation should affect team
communication. How do communication patterns change with increasing workload and
with associated performance decrements? Is the impact of the communication
breakdown moderated by the environment (i.e. distributed vs. co-located)? These
questions will be addressed by examining the results of our communication metrics by
workload condition

Initial analyses include examining communication across workload conditions. If
differences in communication metrics are detected the nature of the differences are more
fully explored.

We hypothesized based on our previous studies and those in the literature that teams
would tend to speak less under high workload (115.1) and would use more action-directed
language (H5.2). This was expected to hold more for effective (i.e., better performing)
teams than ineffective teams (115.3). Moreover, effective teams were expected to remain
taskwork-focused more than poor performing teams, because their teamwork patterns had
been established by the time workload increased. In addition, we anticipated that teams
would employ alternate communication paths when confronted with the glitch. Effective
teams were expected to have a more efficient teamwork routine developed, and so should
have been faster to switch into and out of the alternative communication paths employed
during the glitch (H5.4). Unfortunately these analyses presupposed the capability to
determine the precise timing of the glitch which was event-based, not temporally-based.
Therefore, the information on timing of the glitch was not available making it impossible
to address this hypothesis. Finally, in terms of content coherence, we expected that
during early missions and under low workload, high-performing teams would also have
higher coherence ratings than low-performing teams because they are communicating the
task information clearly. However, during the later high workload mission, higher-
performing teams should have lower coherence scores by virtue of the fact that they
shared expectations of the task and so can afford to reduce explicit communication
(H5.5).
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Table 40
Hypotheses Associated with Task 5

Task/Hypothesis Hypothesis Supported?
Number

5.1 Teams will communicate less under high workload Yes
than low.

5.2 LSA-based coding will indicate more action- ?
oriented communications under high workload
compared to low.

5.3 The patterns in 5.1 and 5.2 are expected to hold Yes
more for high-performing teams than low.

5.4 High-performing teams should be faster to switch ?
into and out of the alternative communication paths
employed during communication breakdowns than
low-performing teams.

5.5 Under low workload, high-performing teams should No
have high coherence scores, but under the later high
workload missions, higher-performing teams should
have lower coherence scores.

There were no data available to test the H5.2 and H5.4

6.7.2 Results

6.7.2.1 Predicting workload level using whole transcripts. The goal of using LSA to
predict workload involved modeling the transcripts as a whole for both high and low
workload teams. By building models of the language used in high and low workload
teams, one can then predict the workload level of any new team. Using LSA and whole
transcripts we were able to accurately predict whether a team was under low or high
workload conditions.

Using a similar k-nearest neighbor algorithm (as above) on whole transcripts to predict
workload we found strong correlations between the actual and predicted workloads. The
algorithm first assigns a score of 1 for high workload and 0 for low workload missions.
Then it takes the average, weighted by distance in the semantic space, of the 10 closest
team-at-missions, excluding all missions from the current team and from other
experiments. "Team-at-missions" whose weighted average is greater than the cutoff of
0.25 are labeled "high workload," others are labeled "low workload." We computed the
Kappa statistic to assess the agreement between the actual and predicted workload.

Experiment 3 Kappa = 0.91
Experiment 4 Kappa = 0.84
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This result shows that the approach can accurately classify a mission as to whether the
team was under high or low workload. (Recall this is Cohen's Kappa, a chance corrected
measure of agreement between the predicted and actual workload labels.)

As an additional check, we redid the workload analyses taking out waypoint names so
that the LSA analyses would not make workload predictions based on the specific
waypoints mentioned, but instead on the actual content expressed during the missions.
(Low and High Workload conditions differed by the number of target waypoints and thus
there were unique identifiers in the form of target waypoint names associated with High,
but not Low Workload.)

In this analysis, we predicted high (1) vs. low (0) workload using the LSA-based 10
closest measure omitting all waypoint names from the transcripts. A discriminant
function was derived from the LSA measure in order to determine how well the measure
could distinguish transcripts based on workload. For the Experiment 3 transcripts, the
function classified 91.8% of the transcripts correctly (90.6% with cross-validation) and
for the Experiment 4 transcripts, it classified 96.5% of the transcripts correctly (96.5%
with cross-validation). The results suggest that LSA is able to easily distinguish
workload based on team language characteristics, even when the specific mission
information is not present. However, it is still possible that LSA is not picking up on
content differences in Low vs. High Workload discourse, but rather the amount of
speaking (in the vector length metric) which is lower for Low Workload than High.

6.7.2.2 Varying LSA parameters to predict team workload. The graph below shows the
results of varying parameters in the correlation of predicted and actual team workload.
With most parameters there was a strong correlation, indicating the predictive value of
our model. The parameters varied are the radius and the corpus of team-at-mission
transcripts used to make the prediction. The radius is the number of "closest" teams used
to make the prediction. For example, when the radii of the ten closest teams (based on
their whole transcript discourse as assessed by LSA) are chosen, the workload level of
each of the ten teams is looked up and a weighted average is computed to assign the
predicted workload level. Ten is a standard choice for this type of task and appears to
work best overall in this case.

The other parameter we varied was the composition of the corpus from which the R
(radius) closest teams were chosen. In Figure 10 ExpAFx indicates all team-at-mission
transcripts from the same experiment were excluded from the corpus. Mission_AFx
indicates only the current team-at-mission transcript was excluded from the corpus.
TeamAFx indicates all team-at-mission transcripts for the same team were excluded
from the corpus. TExOExp_AFx indicates that all team-at-mission transcripts for the
same team and all team-at-mission transcripts from other experiments were excluded
from the corpus. TExOExp_AFx is the most commonly used value for this parameter
followed by Team_AFx, because it is generally best to exclude all other team-at-mission
transcripts from the team for which we are making a prediction to avoid overfitting our
model to the data. Our results below show good predictive performance for both of these
parameter values on the workload prediction task.
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These results show that the measures, including the most conservative, still provide
highly accurate predictions of whether teams were in high or low workload conditions.
This suggests that this approach can be incorporated into systems which could predict if a
team's workload has suddenly changed, or is getting to a level that may cause
deterioration in performance.

0.8
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Figure 10. Work-Load Predictions Correlations Using Experiments 1, 3, and 4.

6.72.3 Workload Effects on transcript density and lag coherence. TheLSA-based
density and lag coherence measures were analyzed for effects of high workload in
Experiments 3 and 4. Table 41 lists the number of observations, means, and standard
deviations of each score for each experiment.
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Table 41
Descriptive Statistics for Transcript Density (a) and Lag Coherence (b) as a Function of
Workload for Experiments 3 and 4

Low WL High WL
(a) Density Density

Exp 3 Exp 4 Exp 3 Exp 4

N 45 46 40 14

Mean 0.057 0.056 0.058 0.059
SD 0.005 0.005 0.005 0.005

Low WL High WL
(b) Lag Coher Lag Coher

Exp 3 Exp 4 Exp 3 Exp 4

N 45 68 40 17

Mean -0.169 -0.148 -0.19 -0.134
SD 0.063 0.046 0.068 0.041

Four one-way ANOVAS were used with the two-levels of workload as the factor variable
and each of the communication metrics as the dependent variable for each experiment.
The results of these analyses are presented in Table 42. The only significant workload
effect was on transcript density in Experiment 4. Specifically, transcripts exhibited
greater density under high workload than low workload (a similar but non-significant
pattern was observed for Experiment 3). Although H5.5 is not supported, the density
finding partially supports H5.1. Teams pack more content-laden terminology into the
same amount of discourse when under pressure from high workload.

Table 42
F-statistics for Workload ANOVAs for Transcript Density and Lag Coherence for
Experiments 3 and 4

IV Experiment 3
Density Lag Coher

Workload F (1,83) = 1.313 F (1,83) = 2.143
Experiment 4
Density Lag Coher

Workload F (1,58) = 3.052* F (1,83) = .560
Note. *p <.10
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6.7.2.4 Effects of workload on communication flow. Using a variety of measures flow
measures with amount of talking as a covariate, we found that teams talk less under high
workload, supporting H5.1.

CHUMS findings. There were fewer CHUMS models per minute for models that include
the null parameter, as well as for those without.

For CHUMS included null parameter models per minute:
F(1, 15) = 12.49,p = 0.003, q2 = 0.454
Mission 4: M= 0.275, SE = 0.008
Mission 5: M= 0.233, SE = 0.009

For CHUMS excluded null parameter models per minute:
F(1, 15) = 13.43,p = 0.002, = 0.472
Mission 4: M= 0.205, SE = 0.007
Mission 5: M= 0.169, SE = 0.007

ProNetfindings. This decrease in communication at high workload was also found with
two of the ProNet measures. High workload was marked by a decrease in chain length
sums. Also, the high workload mission yielded was less likely to yield a detectable A-P
cycle than was the previous mission.

For ProNet chain length sums:
F(1, 16) = 3.44,p = 0.082, q2 = 0.177
Mission 4: M= 54.56, SE = 5.62
Mission 5: M= 39.38, SE = 5.95

For ProNet A-P Cycles:
F(1, 16)= 3.43,p = 0.083, q2 = 0.176
Mission 4: M= 0.722, SE = 0.065
Mission 5: M= 0.546, SE = 0.069

In fact, for the effect of ProNet chain length sums, this adaptation also leads to better
performance (F(1, 14) = 4.14,p = 0.061, /#= -0.546). This indicates that good teams
adapt to high workload by reducing their utterance chain lengths, supporting H5.3.

Dominance findings. Findings were also uncovered for dominance. At the high
workload mission, AVO becomes more dominant, and DEMPC becomes more reactive.
This pattern is closer to the normal pattern for distributed teams. Hence, increased
workload, like the communication glitch, causes teams to behave more like distributed
teams.

For AVO:
F(l, 16) = 6.05,p = 0.026, qr2 = .275
Mission 4: M= -0.417, SE = 0.124
Mission 5: M= 0.028, SE= 0.131
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For DEMPC:
F(l, 16) = 6.36,p = 0.023, r/ =.285
Mission 4: M= 0.272, SE = 0.150
Mission 5: M= -0.279, SE = 0.159

CRPfindings. CRP-based measures did not reveal any meaningful workload effects.

6.7.3 Conclusions

• An LSA-based approach can accurately classify a mission as to whether the team
was under high or low workload.

* LSA-based workload classification findings are robust over variations in the
radius and the corpus of team-at-mission transcripts used to make the prediction

* Transcripts exhibited greater density under high workload than low workload
* Teams speak less under high workload, supporting H5.1
* Under high workload, AVO becomes more dominant, and DEMPC becomes less

so, resembling the patterns seen in distributed teams
* Under high workload, all teams behave more like distributed teams
* Good teams adapt to high workload byreducing their utterance chain lengths,

supporting H5.3.

6.8 Task 6: Investigate Link Between Communication and Shared
Mental Models

6.8.1 Method

Teamwork and taskwork knowledge were measured in both experiments (twice in
Experiment 3, once in Experiment 4. Under Task 6, we investigate the relationship"
between team communication and SMMs (shared mental models). We computed
accuracy of SMMs in two ways, holistic or collective knowledge accuracy. For taskwork
knowledge this involved averaging individual knowledge scores based on comparing
individual Pathfinder networks to individual referent networks (i.e., one for each team
member and one for the team as a whole), where accuracy was proportion of shared links.
Note that overall knowledge accuracy is scored at the individual level against a team-
level referent. For holistic taskwork knowledge, a consensus Pathfinder network (i.e.,
one generated by consensus on each pairwise rating) was compared to the team-level
referent in terms of proportion shared links. Individual teamwork accuracy involved
comparing individual responses on a teamwork knowledge questionnaire to an expert-
response metric. These teamwork scores were combined through averaging (i.e.,
collective score). Team members were also asked to come to consensus on responses to
the teamwork questionnaire. This consensual response was also compared to the expert
referent. This results in a total of four SMM Accuracy Scores for each team in the two
experiments: collective taskwork accuracy, holistic taskwork accuracy, collective
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teamwork accuracy, and holistic teamwork accuracy. For the results presented here, each
of these measures is based on team member knowledge at the end of the experiments.

We also looked at taskwork and teamwork SMMs in terms of intrateam similarity.
Similarity scores were derived for each pair of team members on a team for teamwork or
taskwork knowledge. These similarity scores were averaged across pairs within a team.
We refer to these averages as SMM Similarity Scores.

How do differences along this knowledge sharing dimension correspond to
communication patterns? In this section we look for relationships (i.e., correlations)
between our communication metrics and the knowledge scores. We also examine the
impact of the environment (distributed vs. co-located) on knowledge sharing and
associated communication. It is possible that certain specific communication patterns are
critical for the development of shared mental models in distributed environments, but less
important for co-located teams. For instance, distributed teams may require more
feedback on team member actions, roles, or plans. Consistency of relationships across
experiments will be examined.

We made several predictions. Specific predictions include how sequential flow will
differ based oh variations in knowledge scores. Specifically, teams with more taskwork
knowledge should have longer mean chain lengths because they have an ordered and
rehearsed communication pattern (H6.1). Similarly teams with high levels of teamwork
knowledge should exhibit more stability in terms of communication flow because they
will have better established how much each team member should speak during each
phase of the task (H6.2). We also predict based on previous studies that increased
knowledge sharing (in this task demonstrated by increases in interpositional knowledge
and intrateam similarity) should correspond to decreases in communication frequency
(H6.3). Finally we predict that individual team members with higher overall taskwork
and teamwork knowledge scores should also have higher dominance scores, relative to
those with lower knowledge.
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Table 43
Hypotheses Associated with Task 6.

Task/Hypothesis Hypothesis Supported?
Number

6.1 Teams with more taskwork knowledge should have No
longer mean chain lengths representing
communication flow.

6.2 Teams with high levels of teamwork knowledge No
should exhibit more stability in terms of
communication flow.

6.3 Increased interpositional knowledge and intrateam Partial
similarity should correspond to decreases in
communication frequency.

6.4 Individual team members who understand the task Yes
the best will have higher dominance scores.

6.8.2 Results

6.8.2.1 Transcript density, lag coherence, and shared mental models. An exploratory
approach was undertaken in order to identify any relationships between SMM Accuracy
Scores and team communication content measures. Specifically, all mission Transcript
Density and Lag Coherence scores were evaluated for linear correlation with the SMM
measures. The results (over both experiments) indicated that collective teamwork
knowledge was most consistently correlated with the content metrics (i.e., other SMM
Accuracy measures correlated sporadically with various missions, but were not nearly as
consistent as collective teamwork knowledge).

In order to further investigate the relationship between team communication content and
SMMs, we used Experiment 3 (Knowledge Session 2) and Experiment 4 taskwork SMM
Similarity Score as a covariate with team distribution condition (in the following all
workload effects were ns) to predict transcript density and lag coherence. In other words
we looked at the relationship between team members' shared mental models of the task
(degree of sharing) and communication content. In terms of the taskwork SMM
Similarity Scores, only the transcript density scores seemed to be related (all lag
coherence effects ns). For Experiment 3, there was a condition by covariate interaction
(F (1, 76) = 29.97, p < .001), suggesting that the relationship between taskwork SMM
Similarity Scores and transcript density were different for co-located and distributed
teams. Namely, this relationship was negative for co-located teams (t (29) = -5.77, p <
.001), but nonexistent (ns) for distributed teams. The same analysis on Experiment 4 data
revealed a significant relationship between taskwork SMM Similarity Score and
transcript density (F (1, 54) = 2.70, p =. 10) across team distribution conditions. Post hoc
analysis revealed that this relationship was negative for each condition taken individually,
but more so for co-located (t (27) = -1.73,p < .10) than for distributed (t (29) = -1.52, ns).
Together, these results suggest that taskwork SMM Similarity Scores are more directly
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related to certain aspects of team communication for co-located, compared to distributed
teams. Further, this relationship tends to be negative with a higher degree of knowledge
similarity related to lower degrees of transcript density, or the propensity to use less task-
specific language partially supporting H6.3

The procedure previously applied to taskwork knowledge was also applied to teamwork
knowledge to investigate the relationship between team communication content and
teamwork SMMs. We used Experiment 3 (Knowledge Session 2) and Experiment 4
teamwork SMM Similarity Score as a covariate with team distribution condition (in the
following all workload effects were ns) to predict transcript density and lag coherence.
For Experiment 3, there was a significant distribution condition by Teamwork SMM
Similarity Score for both lag coherence (F (1, 79) = 7.80, p < .01) and transcript density
(F (1, 79) = 4.69, p < .05). A main effect of the covariate, teamwork SMM, was also
found for lag coherence (t (79) = 5.77, p < .00 1). Post hoc analysis on the Experiment 3
lag coherence scores revealed that the interaction effect was due to a strong, positive
relationship between Teamwork SMM Similarity and distributed team lag coherence (t
(49) = 6.93,p < .001) and no relationship between Teamwork SMM Similarity Score and
co-located team lag coherence (ns). This analysis suggests that the teamwork SMM
similarity main effect on lag coherence was likely due to the distributed teams. Post hoc
analysis on Experiment 3 transcript density interaction revealed a strong, negative
relationship between Teamwork SMM Similarity Score and transcript density for
distributed teams (t (32) = -4.43, p < .001), but no relationship for co-located teams (ns).
Together these results indicate that the development of a teamwork SMM may be
strongly and positively tied to the length of time co-located teams spend on a particular
topic (lag coherence) but negatively tied to the use of task-specific language (transcript
density) for distributed teams. The latter, but not the former result supports H6.3. These
results were not replicated in the Experiment 4 data.

6.8.2.2 Shared mental models and communication flow. As was done for the analyses
in Section 6.8.2.1, we examined four SMM Accuracy measures for each team in the two
experiments: collective taskwork accuracy, holistic taskwork accuracy, collective
teamwork accuracy, and holistic teamwork accuracy. For the results presented here, each
of these measures is based on team member knowledge at the end of the experiments. In
all cases of testing for a relationship between SMMs and FAUCET measures, we first
included total amount of speech as a covariate. This is done to determine how much
FAUCET measures contribute to knowledge, beyond the very basic measure of how
much the team was talking.

For both Experiment 3 and Experiment 4, we found no FAUCET relationships between
knowledge accuracy measures and CHUMS or ProNet. Therefore there is not support for
H6.1 and H6.2. There were no CRP relationships for Experiment 4. However, for
Experiment 3, holistic teamwork knowledge was positively correlated with PLO's CRP
score, t(12) = 2 .561,p = .025,partial-r = .595. This can be interpreted as follows: teams
with greater teamwork knowledge also have PLO's that speak as normatively predicted.
This pattern is similar to the findings for the performance measure, in which teams tend
to perform better if PLO is an independent agent.
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Dominance was an adequate predictor of all four knowledge accuracy measures in
Experiment 3, and in three of the four for Experiment 4. In all cases, the predictor was
the mean squared cross-correlation function between a pair of speakers, represented as
ccf2xy (for speaker x to speaker y).

In regard to the Dominance metric results, let's first consider shared mental model
accuracy for taskwork. For holistic taskwork, ccf2da was a negative predictor in
Experiment 3 (t(12) = -1.999,p = .069,partial-r = -0.500). Ccf2dp was a negative
predictor in Experiment 4 (t(15) = -2.002, p = .064, partial-r = -0.459). For collective
taskwork at Experiment 3, ccf2pa was a negative predictor (t(l 3) = -2.019, p = .065,
partial-r = -0.489). Finally, for collective taskwork at Experiment 4, ccf2ap was a
positive predictor (t(15) = 1.910, p = .076, partial-r = .442). These are four disparate
findings for taskwork. However, three of the correlations are negative, suggesting that
every team member's taskwork is best developed when the team member is independent
(in regard to communication flow), with one exception. Teams have better collective
taskwork knowledge accuracy when PLO reacts to AVO's utterances. Generally, these
results support H6.4 in that dominance is associated with high taskwork knowledge
accuracy.

Turning to results of the Dominance metric for shared mental models of teamwork, we
see a more consistent relationship for Experiment 3 between holistic and collective
measures of SMM accuracy. For both holistic and collective teamwork, ccf2da and
ccf2ad were required to form a predictive model, and in all cases, the relationship was
positive. For holistic teamwork, ccf2ad was a non-predictive covariate, and ccf2da was
positively related, t(1 3) = 1.897, p = .080, partial-r = .444. For collective teamwork, a
positive relationship was found for both ccf2ad (t(13) = 2.315, p = .038, partial-r = .471),
and for ccf2da (t(13) = 2.133, p = .053, partial-r = .43 1). Finally, for Experiment 4
collective teamwork, a positive relationship was found for ccf2ap, t(15) = 2 .062,p =
.057, partial-r = .470.

Thus, of the four FAUCET measures, the Dominance metric was most predictive of
shared mental model accuracy for taskwork and teamwork knowledge. It seems that
whether or not team members share knowledge is at least partially determined by the role
identities of conversation leaders and followers.

Finally, we predicted that increased interpositional taskwork knowledge and intrateam
similarity (SMM Similarity Scores), should correspond to decreases in communication
frequency (116.3). For Experiment 3, knowledge was measured twice. It was measured
only once for Experiment 4. In both cases, the knowledge criteria were predicted from
total average amount of speech, by all three team members, averaged across all missions.
Hypothesis 6.3 was not supported, in that no relationship was found between total speech,
and intrateam similarity or interpositional knowledge.
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6.8.3 Conclusions

"* There is some evidence that taskwork and teamwork SMMs can be tied to LSA
measures of team communication content; specifically, lag coherence and transcript
density.

"* Across both Experiments 3 and 4, Taskwork SMM Similarity Scores were predictive
of transcript density. Namely, a higher degree of similarity among the taskwork
mental models of team members is indicative of a lower rate of task-specific jargon,
but only for co-located teams. One interpretation for this finding is that taskwork
similarity may result in less talking and therefore less UAV-specific jargon
supporting H6.3

"* In Experiment 3, Teamwork SMM Similarity Scores were found to be predictive of
the communication measures only for distributed teams. Specifically, teamwork
SMMs were positively related to lag coherence whereas teamwork SMMs were
negatively related to transcript density, partially supporting H6.3.

"* Teams with greater teamwork knowledge also have PLO's that speak as normatively
predicted.

"* Team taskwork knowledge is better when the team members are independent (in
regard to communication flow), with one exception. Teams have better collective
taskwork knowledge when PLO reacts to AVO's utterances.

* Teamwork knowledge is highest when AVO's communication is tied to the other
teammates, especially DEMPC.

6.9 Task 7: Examine Relation Between Communication and Team

Situation Awareness

6.9.1 Method

In order to examine the relationship between FAUCET or content-based communication
metrics and TSA (Team Situation Awareness) for Experiments 3 and 4, TSA was
measured during each mission via accuracy of either summed or consensus team member
responses to situation awareness queries. In order to draw comparisons across
experiments, TSA measures from Missions 4 (low workload) and 5 (high workload) were
used for each experiment. Summed, or collective, accuracy was measured by summing
over individually elicited team member responses. For example, each team member is
individually queried about the number of targets he or she thinks their team will
successfully photograph, and this answer is then compared to the actual outcome, scored
and then the score is summed across team members. Consensus, or holistic, accuracy
was measured by eliciting a response from the team as a whole. For example, the team as
a whole is queried about the nature of the next waypoint on their route. Once the team
reaches a consensus their answer is compared to the actual state of the environment. The
former example is considered a "repeated query" and the latter is an example of a "non-
repeated query" in that the former query was given at every mission while the latter was
not. Based on a high correlation with team performance, as well as the development of
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TSA processes over time, only the repeated queries are analyzed here. A significant
caveat of interpreting the results of the repeated TSA query however is that we do not
fully embrace this a valid measure of TSA because accuracy of response may have a
large memorization component involved. That is, the team knows the query is coming
and over time they tend to learn the correct response.

Do specific communication patterns lend themselves to better team situation awareness?
This question is important in allowing eventual diagnosis of team states (e.g., poor team
SA) through communication data. Again, the nature of the environment (co-located vs.
distributed) and its impact on the relation between situation awareness and
communication is examined, as is changes in situation awareness with experience. How
does the nature of the environment (i.e. distributed vs. F2F) affect the development of
team situation awareness and how does communication relate to the development of team
situation awareness?

We can make some specific predictions about the relationship between team situation
awareness and the content of communications as based on LSA content coding. First,
teams with higher levels of team situation awareness will follow statements with
acknowledgements (H7.1). Although there were no LSA tagging results to directly
support H7. 1, the previous results that supported H3.5 are relevant here. That is, better
performing teams were more likely to follow statements with acknowledgements
compared to less effective teams. Given that for Experiments 3 and 4, team situation
awareness is highly correlated with team performance, we can infer indirect support for
H7.1. It is also predicted that differences in team situation awareness will be reflected by
changes in flow patterns (H7.2).

Table 44
Hypotheses Associated with Task 7.

Task/Hypothesis Hypothesis Supported?
Number

7.1 Teams with higher levels of team situation Yes
awareness will follow statements with
acknowledgements.

7.2 Differences in team situation awareness will be Yes
reflected by changes in flow patterns.

6.9.2 Results

6.9.2.1 Transcript density, lag coherence, and team situation awareness. For the
query-based measure of TSA described above, a linear model with the independent
variables workload (Mission > 4 is high workload in both experiments) and co-
located/distributed, and a covariate for the various LSA metrics were tested for
relationships with the dependent variable TSA. Eight models were fitted in all (Table
45).
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Table 45
Models for Predicting Query-based TSA Using Content Metrics

Collective TSA Holistic TSA
Transcript density Transcript density

Experiment 3 (Model 1) Experiment 3 (Model 5)
Experiment 4 (Model 2) Experiment 4 (Model 6)

Lag coherence Lag coherence
Experiment 3 (Model 3) Experiment 3 (Model 7)
Experiment 4 (Model 4) Experiment 4 (Model 8)

No significant (i.e., p <. 10) relationships were found between team communication and
TSA (allp > .27). Additionally, co-located/distributed was not a significant predictor in
any of the models (allp> .30). Workload was reliably a significant predictor in all eight
models (all p < .003). Controlling for all of the other factors in the model, higher
workload consistently predicted a lower query-based TSA score.

6.9.2.2 Coordinated awareness of situation by teams. Coordinated Awareness of
Situation by Teams (CAST) is an interaction-based measure of TSA. Particularly
relevant to this project, a CAST manipulation ("roadblock") interfering with team
communication was introduced. Specifically, a CAST score was computed for
Experiment 3 Mission 6 based on a communication channel glitch manipulation, based
on the content and flow of communication in response to the roadblock. For this planned
roadblock the communication channel from DEMPC to AVO was cut for five minutes
after information about an unplanned target was given to the DEMPC. Figure 11 shows
the CAST scoring sheet for two of the teams we observed (we observed 19 total).

Perceived first-hand: Perceived first-hand:

I-'AVO [IDEMPC LIPLO I9-IAVO IDIDEMPC [IPLO

Coordinated perception: Coordinated perception:

[l'1AV d' [A• AVOLI

PLO[E] D---- EMPC PLOj•4IJDEMPC

Coordinated action: Coordinated action:

AVolý AAokvoLI%

PLO -- EMPC PLOý ]EMPC

Overcome roadblock? XIYES OINO Overcome roadblock? IX-]YES -INO

Figure 11. CAST scoring sheet with two sample observations
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The score on the left reflects a high TSA score, given that the glitch was addressed
ONLY by DEMPC channeling communication to AVO through the PLO in terms of
"Coordinated action" (in fact this is the optimal, or "referent," solution). Although the
score on the right indicates that this particular team did overcome the roadblock, their
TSA score was lower in that AVO channeling communication to DEMPC through the
PLO really does not reflect accurate awareness of the current situation. Although CAST
measurement implicitly entails communication analysis in this case (i.e., "Coordinated
perception" in Figure 11) we ran exploratory pairwise correlations between the ratio of
observed to total number of checkboxes for three CAST components, including
"Perceived firsthand," "Coordinated perception," and "Coordinated action," and two
LSA-based content metrics, lag coherence and transcript density. "Perceived firsthand"
was significantly correlated with lag coherence (r (11) = -.51, p = .08). This result may
indicate a tendency to have fewer firsthand (as opposed to coordinated/communicated)
perceptions across team members when the topic of conversation extends further back in
time. The correlation between "Coordinated action" and transcript density was not
significant, but was large enough to hint at the possibility of a mild correlation given a
larger sample size (r (11) = .21,p = .50). It is important to note that a high rate of team
members involved in coordinated action (Figure 11, right panel) does not actually
correspond to the changes involved in the unusual situation - in fact this team missed a
target because the PLO was too concerned with being a bi-directional conduit between
AVO and DEMPC, which really was not necessary. It should be emphasized that these
results reflect only one experiment, given that no CAST data were available for
Experiment 4.

6.9.2.3 Team situation awareness and communication flow. For both Experiment 3
and Experiment 4, CHUMS inconsistency measures did not predict collective query-
based TSA, but did predict holistic query-based TSA. That is, for situation awareness
that relies on team consensus, it was important for teams to have a limited number of
well-established communication styles, whereas for individual team member SA, this
does not appear to be an important factor. Number of CHUMS models (excluding
silence as a node in the model, or "No-Null" models) negatively predicted holistic TSA
for Experiment 3 (F(l, 13) = 13 .82 7,p = .003, R2 = .515, B = -0.192), and for Experiment

24 (F(1, 13) = 3.234, p = .095, R =. 199, B = -0.202), supporting H7.2.

The ProNet chain length measures of communication stability were also useful in
predicting holistic TSA, but were not as consistent as the CHUMS predictors. For both
Experiment 3 and Experiment 4, having a lower minimum chain length meant having
greater holistic TSA (Experiment 3: F(l, 13) = 4.479,p = .054, R2 = .256,B = -0.091;
Experiment 4: F(l, 14) = 3.439,p = .085, R 2 = .197, B = -0.166). This means that shorter
fixed sequences of communication were required to establish a "common ground" in the
task, supporting H7.2. These findings were supported by collective TSA in Experiment
3, with a negative relationship for mean, median, and maximum chain length. However,
the collective TSA findings were not replicated at Experiment 4.

Taken with the CHUMS results, this implies that TSA - especially holistic TSA - is most
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accurate when communication styles are restricted to a few (CHUMS) brief (ProNet)
patterns. The implication is that query-based TSA is related to building an established,
restrictedflow vocabulary with which to express current goings-on. These findings are
contrary to our performance results, which tend to favor having a few, long patterns,
however they are supportive of H7.2. For performance, it might be said that better
performing teams are associated with more predictable communication environments.

Both dominance and CRP results revealed relationships between these communication
metrics and TSA, but neither relationship was replicated across Experiments 3 and 4. For
dominance, TSA was not predictable for Experiment 3. However for Experiment 4 both
collective and holistic TSA was fostered by DEMPC relaxing control of the discourse.
DEMPC's dominance negatively predicted collective TSA, F (1, 14) = 3.757, p = .073, R2

= .212, B = -.639. PLO's dominance over DEMPC positively predicted holistic TSA,
F(1, 14) = 4.295,p = .057, R2 = .235, B = 75.685. This suggests that individual
understanding of the situation is generally supported by a more "egalitarian" (or at least
less DEMPC-driven) discourse. Specifically, team consensus of the situation requires
that PLO take a more active role, and that DEMPC respond to this, rather than driving the
discourse.

Finally we turn to CRP, which measures communication conformity to a normative
model of speech quantity. For Experiment 3 only, AVO and DEMPC deviation from the
specified norm predicted better holistic and collective TSA (see Table 46 for inferential
statistics). This was not replicated at Experiment 4, however, and it is difficult to
interpret these un-replicated findings. The implication is that the normative model of
communication quantity is negatively fitted to the team's situation awareness needs.
Perhaps this can be taken in conjunction with the negative DEMPC dominance findings
from Experiment 4 in which case the implication is that, for TSA purposes, the normative
model places too much emphasis on DEMPC (i.e., a single team member's)
communication. This also impacts AVO's CRP score as well, since most of the required
information passage from DEMPC, goes to AVO.

Table 46
F's and B's for CRP Scores Predicting Query-based TSA in Experiment 3

Collective TSA
AVOCRP: F(1, 11) = 7.581, p = .019, R2 = .408, B = -7.166
DEMPC_CRP: F(1, 11) = 3.280, p = .097, R2 = .230, B = -3.000

Holistic TSA
AVOCRP: F(1, 11) = 9.432, p = .01 1, R2 = .462, B = -2.235
DEMPC_CRP: F(l, 11) = 11.027, p = .007, R2 = .501, B = -1.60

6.9.2.4 FAUCET and CAST TSA. The relationship between the CAST measure of TSA
and FAUCET is planned as a future direction, as we are currently collecting more
extensive CAST data under a variety of roadblocks. We have come to feel that ultimately
CAST measurement of TSA will provide a firmer basis for understanding the relationship
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between team communication and TSA. In addition, CAST is very much compatible
with FAUCET metrics and we plan to ultimately use the FAUCET metrics to
automatically derive the CAST metric.

6.9.3 Conclusions

* There is a tendency to have fewer firsthand (as opposed to
coordinated/communicated) perceptions across team members when the topic of
conversation extends further back in time.

* For situation awareness that relies on team consensus, it is important for teams to
have a limited number of brief, well-established communication styles, supporting
H7.2

* Shorter fixed sequences of communication were required to establish a "common
ground" in one study, but the finding was not replicated.

o Query-based TSA is related to building an established, restrictedflow vocabulary
with which to express current goings-on. This contradicts performance results,
which tend to favor having a few, long patterns, but supports H7.2.

0 Individual understanding of the situation is generally supported by a more
"egalitarian" (or at least less DEMPC-driven) discourse. This finding was not
replicated, however.

* The normative model of communication quantity appears to be negatively fitted
to the team's situation awareness needs, but this negative relationship was not
replicated. Perhaps the normative model over-emphasizes DEMPC-driven
discourse supporting the previous conclusion in regard to Dominance.

7.0 CONCLUSIONS AND IMPLICATIONS

This three year effort generated empirical data that yields theoretical and methodological
conclusions, both with implications for understanding and designing for collaboration.
This section first outlines the methodological conclusions, followed by theoretical
conclusions, limitations, and future directions.

7.1 Measure Validity

In the course of this project, nine different communication analysis measures were
applied and evaluated (See Table 47). Four of these measures focused on the analysis of
communication content and were based on Latent Semantic Analysis (LSA) and five
relied on communication flow - devoid of content. As a reminder, we refer to the
collection of flow techniques as FAUCET.

In addition to these measures, there were other methodological innovations in the course
of the project. Specifically, in addition to refining our coordination logging and
transcription software, we also 1) developed metrics to evaluate tagging agreement for
LSA-based automatic tagging and automatic speech recognition case, 2) developed a
keyword-based method to provide a "leaner" baseline for LSA, and 3) developed a Web-
based LSA interface.
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Table 47
Communication Measures Used in Experiments 3 and 4.

MEASURES
New Communication Metrics

Content - LSA-based density
Content- LSA-based performance score
Content - LSA-based automatic tagging
Content- LSA-based lag coherence
Flow - Dominance
Flow - Quantity: CRP
Flow - Sequence: ProNet
Flow - Stability: CHUMS
Flow - Team process surrogate

We hypothesized that our metrics would correspond to team effectiveness (H2. 1) and that
results would replicate across studies (H2.2). We now have data to support both
hypotheses. Our communication analysis metrics generally corresponded to team
effectiveness. For instance, our LSA-based performance scores correlated with actual
team performance (r =.75) and indeed, this pattern generalized over different semantic
spaces and training sets within the same task domain. Similarly the LSA-based tagging
procedure was able to consistently predict tags provided by human coders (i.e., content
codes) and also generalized over semantic and training spaces. The LSA-based density
and coherence functions were also replicated across two of three experiments, though
LSA-based density exhibited higher validity than LSA-based lag coherence.

FAUCET methods also fared well on these same criteria. ProNet results indicated that
longer detectable sequences (and hence more regular communication patterns) were
generally linked to superior performance and process. Further, patterns held across
studies. Using CHUMS and ProNet, it was found that communication stability predicted
performance. Of the five FAUCET methods, ProNet, Dominance, and CHUMS were
more successful in terms of demonstrating validity than CRP and Process Surrogate.

The communication patterns generated by these methods also mapped onto other indices
of team performance and cognition (discussed in the next session) further supporting
methodological validity.

There are a number of applications of this methodology:

1) Describing Collaboration. These measures can be used to describe or summarize
through meaningful data reduction, complex behavior like collaboration in a
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relatively low dimension measure. This qualitative description alone is useful for
research and development in support of collaboration.

2) Assessing Collaboration. These methods can go from qualitative patterns to
quantitative indices representing patterns that can be used to assess or evaluate
team effectiveness. Such evaluative information is invaluable to research and
development in support of collaboration and extremely valuable when team-
scaled performance measures are unavailable.

3) Diagnosing Collaboration. The interpretation of communication patterns can also
move beyond assessment to diagnosis, thereby providing a richer explanation for
collaboration effectiveness or ineffectiveness. This is accomplished when
patterns are tied to collaborative behaviors such as shared mental models or team
situation awareness. This information can be used to understand the nature of a
team's collaboration strengths or weaknesses for theoretical development and
guidance in selecting interventions.

4) Automation of Collaboration Measures. However, the value of this approach,
relative to its cost may not be immediately apparent to the extent that one can
identify other, leaner measures of collaboration that can provide some useful
information. Automation of the communication analysis methods would reduce
the cost and speed up data analysis time, while providing richer profiles of
collaborative behavior. This is the central focus of our current ONR work.

5) Real-time Communication Analysis. Not only would collaboration research
benefit, but ultimately, the application of this work that seems to be most
tantalizing, is the possibility for on-line, real time assessment of team
performance and cognition using communication patterns. The use of
communication data, an ongoing data stream concomitant with many
collaborative tasks, allows for the possibility of automation. That is, the team or
group is not interrupted to complete a survey, but rather communication is
monitored unobtrusively in real-time. A system that automatically detects
problems, such as a breakdown in cohesiveness or lack of team situation
awareness, is a pinnacle for team communication researchers and is what uniquely
distinguishes this approach from other more obtrusive measure of collaboration.

6) Disruption of Collaboration. Finally, there is an application that involves turning
the tables on the monitoring and intervention approach. It is possible to conceive
applications in which these methods are used to monitor and disrupt enemy
collaboration.

Thus, though there are immediate applications of communication analysis techniques,
many of the most tantalizing applications are hinging on the automation of the methods,
as well as the ability to port methods to different domains. At this point in the project, we
have achieved a semi-automated state for most of the methods and this state is in the
process of implementation as separate effort. However, in this effort we have also
encountered several barriers to ultimate automation and generalizeability to other
domains.

Analysis of communication content is the most significant barrier to automation. The
first is that unlike the flow-based techniques, the content of discourse (i.e., words,
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sentences) is needed and at the moment, it is needed in text format. This creates a need
for transcription of the audio-taped discourse. Despite our development of custom
transcription software that merged the time-stamped COMLOG (speaker and listener
identities) with a window for typing the transcript, this process was a major bottleneck in
the effort. The synchronization of the time-stamped COMLOG with the audio discourse
was one problem. Without this, the transcription of speaker and listener identity created a
large burden on the transcriptionist and without any COMLOG data, these identities
(especially listener) are quite difficult to discern. This problem combined with the fact
that transcription is a tedious and time consuming process, created an enormous time lag
between data collection and post-processed data for content analysis.

Our team has been exploring a solution to this problem in the form of automated speech
recognition. Results of this analysis are described under Task 2. In summary, they show
that LSA-based performance scores are robust to errors due to speech recognition
software. However, this does not solve the problem of speaker and listener identity,
information that is needed for some forms of content analysis and which becomes an
even greater problem as the number of team members increases from three.

Another barrier to automating content analysis using LSA for use in new domains is the
fact that LSA relies on a corpus of domain-specific text. In this case the corpus was a
large set of UAV training manuals and other documentation and was later supplemented
with our own UAV transcripts. These were used to build the semantic space. Although
automation of content analysis could take place within the UAV context of the semantic
space, the procedure would be difficult to transfer to other domains requiring a different
corpus (e.g., AWACS, emergency operations). On the positive side, results from this
effort did demonstrate that the LSA-based results were fairly robust to training sets and
semantic spaces derived from different UAV experiments, but this does not address
across-domain generality (cf. KeyWI). As a partial solution, keyword indexing software
(KeyWi) was written in the course of this effort with a command-line interface. KeyWi
is a Java program that takes a corpus input, a keyword input, and file input, in order to
produce vector length, distance between utterances, and cosine (i.e., correlation) scores
between utterances in a transcript. Although only tested on one experiment, this program
is inherently portable relative to our other content methods.

On the other hand, the FAUCET methods lend themselves to complete automation,
though there are caveats that should be recognized here. Specifically, for both content
and flow techniques the automatic extraction of patterns in the communication data is
only a first step in a larger process. The interpretation of these patterns in terms of
collaboration effectiveness or more specifically, in terms of team process and cognition,
is a different matter. Our interpretation has relied extensively on the existence of other
measures of team performance, team situation awareness, and shared mental models.
Without these there can be little said about the patterns. In addition, the interpretation is
only as good as the criterion measures. This limitation is reflected in our shared mental
model and team situation awareness analyses which relied on criterion measures of
constructs that were still themselves under empirical scrutiny and development.
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Essentially, "good" criterion measures allow better interpretation of the patterns of
communication data.

Given good criterion measures and pattern extraction procedures that are automated,
there are sill limits to generalizeability beyond the studied domain. A new domain
requires not only new criterion measures, but a potentially new interpretation of the
patterns, in light of the criterion measures. Ultimately, we envision marrying these
pattern extraction procedures and criterion measures with a machine learning procedure
that associates, patterns of communication data with the criterion (e.g., effective
performance, good team situation awareness) over time. This procedure could be
automated, but would require adequate sampling in the data monitoring stage for the
machine learning procedure settle on interpretable patterns

One other solution that we envision for eventual automated and efficient pattern
extraction and interpretation would involve a stepwise procedure. The first initial
screening step would apply the least costly measures first starting with lean measures
such as word count and some FAUCET methods. Then, if interesting patterns are
observed, some of the more expensive content-based measures could be applied, starting
first with keyword methods and then LSA-based methods. The idea would be to use the
more powerful, but also more costly methods, only if an interesting pattern is detected
using the less costly, shallower methods. Support for this approach was also found in this
effort. The keyword method that was developed provided meaningful results comparable
to the LSA-based methods and the measure of word count was found to be highly
correlated with LSA-vector length, a much more costly measure. However, other results
indicated that FAUCET methods predict team performance better than simple, low level
communication quantity methods.

In summary, the patterns extracted using our communication analysis methods are
predictive of performance in the context of our UAV collaboration. The methods in their
current state can inform research on collaboration as described in the following section.
Applications in real-time monitoring of collaboration are possible, but will need to
address the limitations of transcription (or speech recognition), inadequate criterion
measures, and domain dependence.

7.2 Communication and Collaboration

Our communication analysis methods were applied to the team collaboration that
happens in the context of a simulated three-person UAV ground control station.
Although team communication has been measured before, its richness has seldom been
exploited at the level associated with this project. Therefore, in addition to testing our
methods, we have had an opportunity to explore in a deep way, the communication
behavior of tactical command-and-control teams, the relation of that behavior to team
effectiveness and cognition (i.e., shared mental models, team situation awareness), and
the effects of distributed work and workload on that communication.
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7.2.1 Communication and Team Performance

The results described in the previous section on methodological validity also served as a
starting point for understanding the relationship between team communication and
performance or effectiveness. We were satisfied by a relationship between
communication and performance for the purposes of validity, but under Task 3, explored
these relationships more deeply.

In our exploration we found that there are specific patterns of flow and content that are
associated with effective performance on our UAV task. Though we have no data to
empirically support the generalizeability of these results, through careful task analyses
and review of the literature we believe that our results likely generalize to similar
command-and-control tasks (i.e., very well-structured tasks in which information
exchange among a relatively small group predominates).

We have found that effective collaborations in the UAV task can be apparent in what is
said. For instance, Markov analyses has shown that teams that tend to state more facts
and acknowledge other team members more, tend to perform better, whereas, those that
express more uncertainty and need to make more responses to each other tend to perform
worse. Also, in terms of content, effective collaborations are associated with higher
density (i.e., more "UAV talk") which developmentally starts at a low level, increased
dramatically, and tends to return to a moderate level. In addition, as conversations
become related over time, we observe increases in team performance.

Examining the flow patterns we-see that consistency and regularity in communication
flow is a hallmark of effective collaboration and team performance. In addition, we.
found that increased numbers of communication patterns in order to adapt is also
associated with effective collaboration.

These results empirically support what has often been inferred by researchers in the team
cognition literature, that expectancies and thus consistencies develop over time and are
the hallmark of highly skilled teams.

7.2.2 Communication and Geographic Distribution

In the two studies that contributed to our data sets, the geographic distribution of the three
team members was manipulated such that half of the teams were co-located and half were
distributed. Note that this manipulation was quite subtle. Namely, even the co-located
teams, though they were in the same room sitting in viewing distance, talked over head
sets. They were also immersed in their displays and there were rarely face-to-face
interactions. The main difference between the co-located and distributed condition was
the lack of co-presence, in the latter. That is, those in the distributed condition had no
physical awareness of their surrounding team members.

Results of these studies indicated that there were no effects of the manipulation on team
performance (Cooke, DeJoode, Pedersen, Gorman, Connor, & Kiekel, 2004).
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Interestingly, however, there were effects on team communication. Namely, co-located
teams, like effective teams more generally, tended to develop consistent and predictable
patterns of communication, also developing their own unique, but consistent team lexicon
over time. Co-located teams also exhibited more open (i.e., statement not followed by an
acknowledgement or fact) communication channels than distributed teams.

Distributed teams, as opposed to co-located teams, were less consistent in terms of
communication patterns. They had more distinct and less stable flow patterns, suggesting
that the distributed environment increases the range of behaviors on the part of the team.
Similarly, co-located teams demonstrated this type of highly variable behavior (i.e., more
communication patterns) in response to the communication break down.

7.2.3 Communication and Workload

Also in the two experiments workload was manipulated by increasing the number of
target waypoints that were required to be photographed in a single 40-minute mission. In
addition, other parameters of the task environment were manipulated to increase
difficulty (e.g., more frequent alarms). Workload, unlike geographic dispersion, had a
significant effect on team performance, increasing the time spent per target for higher
levels of workload.

Workload also had an effect on communication. First, one might expect that the
increased number of targets would also increase the amount of talking in the high
workload condition. This is because communication generally needs to occur at, or
around, target waypoints. In fact, the opposite occurred. Teams communicated less
under high workload (see also Stout, Cannon-Bowers, Salas, & Milanovich, 1999).
There were also signs of adaptive behavior occurring under high workload. All teams
"behaved" more like distributed teams under these circumstances and adapted by
reducing their utterance chain lengths and reversing the dominance pattern typically seen
for AVOs and DEMPCs (both are types of flow patterns).

There were also differences in communication content. Under high workload
communication was briefer, but more densely packed. Also, the LSA-based approach
was able to accurately classify a mission as to whether the team was under high or low
workload. This method was found to be robust over variations in the radius and the
corpus of team-at-mission transcripts used to make the prediction as well as a variation in
which the target names (potentially discriminating targets) were removed from the
transcripts. However, the results may also be attributed to the differences between the
two types of missions in terms of amount of talking. As reported earlier, the LSA vector
length metric used in this scoring approach is correlated with word count.

7.2.4 Communication and Team Cognition

Measures of team knowledge (i.e., shared mental models) and team situation awareness
were also taken in the course of data collection for both studies.
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Shared mental models of taskwork knowledge appear more directly related to certain
aspects of team communication for co-located, compared to distributed teams. Further,
this relationship tends to be negative with a higher degree of knowledge similarity related
to lower degrees of transcript density. In other words more UAV-speak is used by those
teams with little shared knowledge of the task. We can speculate that the increased
density may be a compensatory behavior for the low knowledge sharing. Further, shared
mental models regarding teamwork appear tied positively to the length of time co-located
teams spend on a particular topic (lag coherence). Thus a shared mental model in our
UAV task seems to go along with high topic coherence, but low density (UAV-speak).
For co-located teams, this pattern of results is less variable and more like that of
distributed teams under high workload. The results pertaining to shared mental models
and flow patterns were rather weak and sporadic except that dominance seems related to
having more knowledge about the task.

Good team situation awareness as measured by the query method tends to be associated
with 1) a limited number of brief, well-established communication styles, 2) building an
established, restrictedflow vocabulary with which to express current goings-on, and 3)
more egalitarian discourse. It should be noted that this pattern contradicts performance
results, which tend to favor having a few, long patterns. This is suggestive of a more
general theme that contrasts stable, well established patterns and high team performance
with flexible, varied patterns and the ability to adapt communication patterns to novel
situations. Teams with high SA, teams that are distributed, teams faced with a
communication break down, and teams that are under high workload seem to
accommodate the latter pattern.

In general, the results for team cognition may be speculative to the extent that the
criterion measures are limited. Previous work has indicated that shared mental models do
not explain much of the variance in team performance in the UAV task, although
admittedly it is critical to achieve a certain baseline understanding of the task and team.
Further, the query-based situation awareness measures do not seem to directly reflect the
truly collaborative nature of team situation awareness as much as our new CAST
(Coordinated Awareness of the Situation in Teams) score does.

7.3 Naval Relevance

The methods developed and tested here for the analysis of communication will provide
tools that will enhance our understanding of the collaborative process and provide a
means of identifying the strengths and weaknesses in such processes. At the same time,
the further automation and generalization of the computational tools is an essential step
toward a system that monitors communication in real-time in order to identify anomalous
patterns and intervene to prevent team ineffectiveness or error. Such a system would
work in the background of a larger command-and-control system, or shipboard command
information system. Other applications include the monitoring of enemy
communications to detect patterns and disrupt collaboration in a language-independent
way. More immediately, these techniques can be useful for the evaluation of techniques,
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systems, or decision aids that are purported to enhance collaboration, for example by
contrasting enhanced communication vs. un-enhanced communication.

7.4 Future Directions

Our future work will move toward automation and generality by: 1) implementing some
of the most successful FAUCET methods (i.e., ProNet and Dominance) in a software
tool, 2) applying the methods to communication analysis in domains that are
characterized by longer term planning and decision making, and 3) exploring techniques
for automated interpretation of communication patterns. We have also noticed that
communication analysis has gained momentum in the years since we began this project
with other investigators proposing parallel approaches (e.g., Diedrich, Freeman, Entin, &
MacMillan, 2005; Swoboda, Kilduff, & Katz, 2005).

Our findings with regard to communication and collaboration have directed our attention
to the importance of pattern stability (and instability) in the collaborative process.
Communication patterns are either rigid and stable or variable, flexible, and adaptive.
Although high levels of performance can be achieved with the rigid and stable
collaborative process, most dynamic situations seem to call for more adaptive patterns.
We have also been impressed by teams' propensity to self organize. That is, most
patterns, whether stable or variable, are not directly trained, but emerge as a result of
team interactions over time. These findings are extremely relevant to team training and
subsequent deployment. These and other similar results have led us to think about team
cognition as an ecological phenomenon. We see team cognition as emerging from the
adaptive interactions of teammates, rather than a collection of cognitive entities (i.e., the
individually-trained personnel). This new perspective has led to new theorizing and the
development of new measures of team situation awareness (i.e., CAST), as well as
measures of team coordination (Cooke & Gorman, in press). We see a strong mapping
between communication flow and self-organized aspects of team coordination, and
envision that the automation of the flow techniques should ultimately facilitate the
automated measurement of self-organized team coordination, Thus, the focus on
communication, a team process, has generated a new way of thinking about team
cognition and new methods for measuring it. In the long run, the propensity to self-
organize (given any team) may weigh heavy on team performance, perhaps even more
than individually-based training.
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10.0 TRANSITIONS

Under technology transfer we include the application of methods developed primarily
for this project to other, outside projects as well as the development of new
technologies based on the research under this grant.

" Cooke and students have been working with a small business in Tempe called
Crawdad. We have shared some of our communication data with Kevin Dooley
and Steve Corman of Crawdad and ASU, who have been applying centering
resonance analysis to these data.

" Peter Foltz has discussed the results of these studies with personnel in the Navy
(Katie Ricci, NAVAIR, Ray Perez, ONR), as well as with personnel from
DARPA (Ralph Chatham), AFRL (Winston Bennett, HEAA), and ARL (Linda
Pierce, Mike Strub). Some of the methods developed as part of the research will
be tested within an Army peace-keeping context funded through ARL.

" Peter Foltz is also working to transfer some of the LSA-based communication
analysis measures through Pearson Knowledge Technologies. They are currently
working on contracts with AFRL, ONR and DARPA, which can benefit from
such technologies.

" Under development of new technology, we have a new user-friendly web-based
LSA tool, which can be used to assess team communication against a UAV
semantic space ("Latent Semantic Analysis in Action";
http://bluff.mnsu.edu/-ahmed/).

* We have also under this effort refined the transcription software that merges the
comlog data that generates speaker, listener and time stamp with a window for
transcription.

* The CERTT Lab is working in conjunction with Kevin Gluck's Palm Lab at the
Air Force Research Lab. The CERTT Lab is providing communication data that
can serve as a target for a natural language processing front end of an intelligent
agent who will serve as the simulation AVO.

* Communication flow methods are being incorporated into a communication
analysis tool in a joint project with Aptima and Kathleen Carley (CMU) for the
Navy. Some of the CERTT Lab's transcribed data has also been transitioned to
this group for testing analytic methods.

The CERTT (Cognitive Engineering Research on Team Tasks) Laboratory has
relocated to a new facility (Cognitive Engineering Research Institute) and
continues to host hundreds of visitors each year -for demonstrations and tours.
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" Dr. Cooke has discussed this work in invited talks at Air Force Research
Laboratory, Georgia Tech, University of North Dakota, and Texas Tech, as well
as numerous conferences and small meetings including:

o A meeting sponsored by Human Factors and Ergonomics Society and the
Federation of Social and Behavioral Science on Human Factors of
Homeland Security

o A National Academies Workshop on Scalable Interfaces for Air and
Ground Military Robots.

o A team workshop sponsored by University of Central Florida and the
Army Research Institute

o Two CERI-sponsored Human Factors of UAVs workshops (May 2005 and
May 2005)

" Dr. Cooke also has a statement about coordination in hurricane Katrina on the
APA web site (http://www.apa.org/ppo/issues/katrinaresearch.html).

"* Dr. Cooke is also on two NRC National Academies of Science committees in
which team coordination and the communication metrics have been discussed.

Related Projects

* Air Force Office of Scientific Research and Air Force Research Laboratory grant
to Cooke; Acquisition and Retention of Coordination in Command-and-Control.
This is an integrated empirical and modeling effort to understand, model, and
measure team coordination as it evolves with skill acquisition and periods of
disuse.

STTR N04-T026 AP-P-523 (subcontract to Cooke at CERI from Aptima)
IMAGES: Instrument for the Measurement and Advancement of Group
Environmental SA. Involves applying communication flow techniques to larger
communication analysis tool.

Army Research Laboratory Advanced Decision Architecture Collaborative
Technology Alliance (subcontract from MicroAnalysis and Design) to Foltz and
others. Research contract to investigate culture, communications and cognition of
teams doing intelligence decision-making tasks.

Air Force Office of Scientific Research to Foltz. Automatic Communication
Analysis System using Latent Semantic Analysis. Research grant to study
communication analyses of Air Force communications from distributed mission
training environments.


